
Pose estimation of unknown tumbling bodies

Arion Zimmermann

Master’s thesis

Spring 2024

Advisors : Professor Soon-Jo Chung

Professor Colin Jones



Contents

1 Abstract 1

2 Introduction 2

3 Related work 4

4 Method 6

4.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 16

4.2.2 Sparse CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 COFFEE feature descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6.1 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.3 Camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Quantitative results 40

5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Parameter-invariant metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Pixel error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Pose estimation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Computational efficiency metrics . . . . . . . . . . . . . . . . . . . . . . . 52

6 Qualitative results 56

6.1 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Feature matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



7 Implementation 59

7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 Feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.6 Motion synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.7 COFFEE trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.7.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.7.2 Online domain randomization . . . . . . . . . . . . . . . . . . . . . 70

7.8 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Conclusion 72

2



1 Abstract

The accurate state estimation of unknown rigid bodies in space is a critical challenge

with applications ranging from space debris tracking to asteroid shape estimation. A

necessary enabler for this technology is to find and track features on a continuous video

stream in real-time. Recent advances in feature extraction make use of Convolutional

Neural Networks (CNNs) and Deep Learning to yield higher quality features than classi-

cal feature extraction algorithms. Nevertheless, CNNs require large amounts of memory

and computational power to be able to perform inference on a real-time video stream,

which is not a given onboard spacecraft. Additionally, these CNNs are often not robust

to the drastic light occlusions that are common in space.

We introduce COFFEE, a novel fast feature extraction and matching algorithm de-

signed to leverage prior information on the sun phase angle given by sun-tracking sensors

commonly available on spacecraft. The algorithm associates salient contours to their

projected shadows to detect sparse but highly descriptive features. A fast inference

Sparse Neural Network followed by an attention-based Graph Neural Network matcher

are then jointly trained to provide a set of correspondences between successive frames.

The resulting pose estimates were found to be more accurate than with classical

pose estimation pipelines and an order of magnitude faster than other state-of-the-art

deep-learning pipelines on synthetic data and on renderings of the tumbling asteroid

Apophis.
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2 Introduction

In 2004, astronomers Roy Tucker, David Tholen and Fabrizio Bernardi discovered the

Apophis asteroid during its first observable fly-by of Earth [1]. Until recently, it was

considered as one of the most threating asteroids, as there was a lot of uncertainty in its

trajectory and its proximity to Earth. This hypothesis was fortunately contradicted by

recent observations of Apophis’ trajectory during its 2021 fly-by to Earth [2].

Nevertheless, the scientific interest in analyzing this asteroid is still of great impor-

tance, as it could provide valuable information about the formation of the solar system

and give an understanding of the potential resources that are within the asteroid.

In 2029, the Apophis asteroid will undergo yet another fly-by of Earth. Many space

agencies have already planned missions to study this asteroid in detail, such as the

OSIRIS-APEX [3] from NASA and Ramses [4] from ESA.

Preliminary studies [5] on the trajectory of Apophis suggest that it has a non-uniform

inertia matrix and is currently tumbling along its second axis of inertia. As the dynamics

of bodies rotating along their second principal axis of inertia is unstable and chaotic by

nature, it might be extremely difficult to predict its motion, even in a short time frame.

Henceforth, classical motion models would need to account for an unusually large process

noise, and it is believed that current state-of-the-art algorithms to estimate the motion of

a rigid body in space would not be sufficient to determine the pose of Apophis in real-time.

Some scientific missions require spacecraft to synchronize their orbit to the motion of

the asteroid before engaging a final approach to its surface. Typically, ground operators

would collect imagery data from the spacecraft and deduce the long-term motion of the

asteroid by matching highly descriptive features on its surface, such as the edge of craters

and the shape of boulders. Photogrammetry or Stereophotoclinometry (SPC) methods

would be used to obtain the shape model of the asteroid and an accurate estimate of
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its motion. Up to now, missions to asteroids have always included a significant portion

of their mission time to analyze the asteroid’s trajectory before attempting to extract a

sample.

In the case of Apophis, the unpredictable motion of the asteroid and the harsh light-

ing conditions encountered in space make that method useful to recover the shape of

Apophis but impractical to estimate its instantaneous motion, as it is tumbling.

The purpose of this Master’s thesis is to design a robust and accurate real-time

algorithm capable of estimating the instantaneous pose of a tumbling small body, thereby

enabling orbit synchronization, a key capability for potential scientific missions around

tumbling bodies in space.

3



3 Related work

The pose estimation of asteroids usually involves classical feature descriptors and matchers

to find keypoint correspondences between two successive frames. The detected features

are usually salient points processed by hand-crafted descriptors such as SIFT, ORB or

AKAZE. Nesnas et al. [6] provide an excellent framework to process such hand-crafted

feature in an autonomous navigation pipeline around asteroids.

Several studies focused on the detection and matching of natural landmarks, such

as craters or boulders, which provided features easily trackable in time [7] [8] but make

strong assumptions about the distribution of such features.

The relative pose between the spacecraft and the asteroid is then either formulated as

a Maximum-Likelihood estimation framework to minimize the reprojection error between

multiple frames [9] or as a pose-graph optimization problem [10] [11]. In these classical

cases, strong occlusions can mislead the pose estimation algorithm and give completely

erroneous readings.

To improve the robustness of these algorithm to different lighting conditions, deep-

learning methods have been developed, which leverage Convolutional Neural Networks

and Multi-Layer Perceptrons.

Some studies [12] [13] proposed a fully learned pipeline to estimate the pose of the

uncooperative spacecraft directly. Nonetheless, these methods do not apply to asteroid

as the distinctiveness of features and surface roughness are fundamentally different. Ka-

luthantrige et al. [14] used a CNN-based approach to regress the relative pose between

a camera and an asteroid but trained and tested their model on renderings of a single

asteroid.

Many of these studies however acknowledge the effect of moving shadows due to a
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varying sun-phase angle and asteroid rotation on the accuracy of the pose estimation

pipeline [6] [14] [7]. Additionally, deep-learning methods, such as [14] [12] [13], most of

the times neglect the computational resources demanded by their models.

Even though deep learning improved the invariance of the pose estimation algorithm

to changing lighting conditions, only a few methods have explicitly incorporated the sun

phase angle as a prior to the state estimation. [15] used Neural Radiance Field to find

a dense solution to represent the shape of an asteroid. Even though not real-time, this

method is the first to incorporate information about the camera and the sun phase angle

as an input embedding in their model.

We will show that treating the sun phase angle as a prior can not only improve the

accuracy of deep-learning pipelines but also significantly accelerate them.
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4 Method

The pipeline we propose here to estimate the state of a small body can be decomposed

into four independent steps, as depicted in figure 1.

Figure 1: Standard keypoint-based pipeline

Unlike recent methods [12] [13] that involve merging multiple of these steps, we de-

cided to maintain this classical four-step pipeline to better explain how the components

of the algorithm are intertwined with each other. Explainability is a key property of

algorithms for space applications, as it gives more confidence on the robustness of a given

algorithm during its testing and validation phase. Since the onboard computational

resources are limited, the algorithms used for each of these steps were carefully selected

to minimize the required computational resources.

In our pipeline, we make use of a keypoints-based approach, where the images are

first processed to only consider a set of highly descriptive salient features in a step called

feature detection.

We detect the keypoints classically and leverage novel deep learning methods to pro-

cess those keypoints through feature description and find matches between neighboring

frames with feature matching. Finally, the attitude of the asteroid can be computed

through a pose estimation algorithm.

We make use of a keypoint-based pipeline, as opposed to dense matching and optical
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flow. The latter methods try minimizing the pixel-wise reprojection error for all pixels

in an image. Classical methods, such as the Lucas-Kanade [16] optical flow, Farnebäck

[17] method or the Horn-Schunck algorithm [18], perform well in scenes with a consistent

illumination and constant motion. More recent research on optical flow methods using

deep learning, such as RAFT [19], Flownet2 [20], and PWC-Net [21], have shown to

be much more robust to changing lighting conditions and non-uniform motions. In all

cases, dense matching methods are too computationally expensive to be used onboard

spacecraft to enable real-time pose estimation.

Keypoint-based matching, however, is used extensively in real-time applications.

Indeed, selecting a subset of pixels from an input image dramatically improves the com-

putational efficiency of the pipeline. The challenge is that the pipeline’s algorithms

must guarantee that the selected subset of features will represent the same geometrical

features of the underlying object (trackability) and will contain enough information to

be distinguishable from one another (precision).

4.1 Feature detection

Typical pose estimation pipelines rely on the detection of a sparse set of features from the

input images. The advantages of this method are twofold. On the one hand, extracting

only a sparse set of features from the input image significantly accelerates the processing

of subsequent stages in the pose estimation pipeline. On the other hand, the keypoints

are often selected to be highly invariant to changing lighting conditions.

Nevertheless, selecting the most relevant pixels in an image is a challenging step, as

typically only a subset of around 1000 pixels from a 1MP image are kept and processed

in subsequent steps. This subset must be highly invariant to viewpoint and lighting

changes, as the same subset of keypoints should be found in neighboring frames.
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Extensive research has already been done on the design of such keypoint detectors.

For instance, the Harris corner detector [22] and the Shi-Tomasi [23] detector finds rel-

evant corners by analyzing the eigenvalues of the intensity gradients around each pixel

of the image. The Difference of Gaussians method progressively blurs the image and

computes the difference between two successive blur levels. Keypoints are then detected

as local extrema in scale and space. The FAST [24] detector defines a 16-pixel circle

around each pixel and determines if the pixel intensity is changing on the border of this

circle.

Deep-learning models were also developed to find the most relevant keypoints. Al-

though most method [25] [26] [27] [28] [29] [30] require simultaneous feature detection

and description, Key.Net [31] leverages hand-crafted detector filters and learned filters

at different scales to find the most relevant keypoints.

Most of the current algorithms rely on the assumption that edges or corners with

high contrast changes are likely to reappear in subsequent frames. This assumption is

well verified in indoor and outdoor environments on Earth. Nevertheless, it does not

hold for rotating bodies in a space environment. Space bodies typically have a highly

uniform color and texture. The only visible property is the amount of reflected light from

a given surface, which is the consequence of the self-cast shadows from the geometry

of the asteroid onto itself. In other words, the asteroid’s material is mostly uniform,

but the sunlight reflected from its surface is not. Picture 2 shows a picture from the

main camera of the Double Asteroid Redirection Test (DART) mission to the asteroid

Dimorphos. The sunlight only makes the surface roughness and boulders visible.
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Figure 2: Picture of the Dimorphos asteroid seconds before impact [32]

Current feature detectors fail to recognize which edges are part of the geometry of

the asteroid and which edges are self-cast projections of this geometry. This shortcoming

may lead to a high bias in the estimation of the asteroid’s pose for some distribution of

boulders and craters on the asteroid because the shadows do not move in the same way

as the asteroid’s geometry.

Here, we propose a keypoint detection algorithm that leverages the information from

the onboard sun tracker to have a priori information about which parts of the image are

self-cast shadows and which parts are not.
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To simplify the analysis of this shadow problem, let’s define four reference frames.

1. World reference frame: Inertial reference fixed at the center of the asteroid Oa.

2. Asteroid reference frame: Reference frame that is centered and aligned with the

body of the asteroid. The rotation matrix Ra
w transforms vector in the asteroid

frame to the world frame.

3. Camera reference frame: Inertial reference frame that is centered and aligned with

the camera sensor’s image plane. The center of the camera is denoted Oc. Note

that the frame is assumed inertial because all non-inertial motion of the camera

can be compensated by an equal and opposite motion of the asteroid. Additionally,

the camera frame’s z-axis can be assumed to be aligned with the world frame’s

z-axis.

4. Sun reference frame: Inertial reference fixed at the center of the sun Os.

Additionally, let’s define the unit vector d̂ describing the direction of the sun in the

world reference frame. The plane formed by the origin of the asteroid and the camera

reference frame, along with d̂ is denoted Π.

The sun tracker is used to orient the camera such that the camera reference frame’s

x-axis is lined up with Π, as shown in figure 3. Without loss of generality, the camera is

assumed to point at Oa.
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Figure 3: Situation projected in plane Π

Let’s denote by ϕ the sun phase angle formed by Os, Oa and Oc.

To simplify the analysis, define Pw = [Xw Yw Zw 1]T as the asteroid’s points in

the world reference frame with homogeneous coordinates. The shadow pattern on the

asteroid, as seen from the camera, can be analyzed by decomposing the mesh of the

asteroid into a set of 3D points. A ray is traced from each of point Pi
w, going in the

direction of the sun vector d̂w, until it hits again the geometry of the asteroid. All such

lines obey to equation (1) for any scalar λ ∈ R.

Ri
w(λ) = Pi

w + λD̂w (1)

where D̂ = [d̂ 0]T = [sin ϕ 0 cos ϕ 0]T is the sun direction vector in homogeneous
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coordinates. The important observation here is that all casted rays are parallel to each

other, implying that their projection onto the camera image plane is rendered as lines that

intersect themselves into a vanishing point. Indeed, the points Pi
w can be transformed

in the camera’s reference frame as Pi
c through the extrinsic matrix M , such that

M =

 R t

0T 1


where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector. The homogeneous

coordinates of a 3D point in the world frame can be transformed to the camera frame

Pcamera = [Xc Yc Zc 1]⊤ using the extrinsic matrix:

Xc

Yc

Zc

1


=

Rw t

0T 1




Xw

Yw

Zw

1


. We assumed that the camera frame was aligned with the plane Π, shared the same

z-axis as the world frame and pointed at the center of the asteroid, effectively putting

additional constraints on the extrinsic matrix M, such that

M =



1 0 0 0

0 1 0 0

0 0 1 z0

0 0 0 1


where z0 is the distance between the camera and the asteroid.

Now, the projection of the ray Ri
w(λ) through M yields

MRi
w(λ) = λ



sin(ϕ)

0

cos(ϕ)

0


+ Pi

w
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The vanishing point v can now be expressed by taking the limit as λ→∞ and apply

the perspective projection by dividing all coordinates by their depth:

v =

tan(ϕ)

0


Then, δ = fx tan(ϕ) is the offset from the vanishing point to the camera’s optical center,

where fx is the horizontal focal length. Figure 4 illustrates this phenomenon by depicting

the projection of 3D lines and their vanishing point in this configuration.

Figure 4: Projection of 3D lines

The main idea here is that all points belonging to the geometry of the asteroid may

only cast a shadow in the direction of the vanishing point. Thereby, we can design an
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algorithm that takes advantage of this observation to distinguish between features and

their cast shadow. The advantages of this method are twofold:

1. It allows us to find points that are protruding from the asteroid (e.g. craters and

boulders) and that will therefore remain illuminated through time.

2. It prevents us from selecting untrackable keypoints at the edge of the shadow ray.

We designed the Celestial Occlusion Fast FEature Extractor classical detector in

1 that scans each of these rays and encodes the protruding points as a sparse set of

coordinates and the size of their cast shadow as a feature value.

Algorithm 1 COFFEE detector
1: Input: input dense image, ϕ sun phase angle

2: Output: output, sparse image

3: rectified ← Rectify(input, ϕ)

4: thresholded ← Thresholding(rectified)

5: filtered ← EdgeFilter(thresholded)

6: compressed, crows, cols ← CSR(filtered)

7: for each row i do

8: for each column j do

9: start_idx ← crows[row_idx]

10: end_idx ← crows[row_idx + 1]

11: index ← start_idx + col_idx

12: if compressed [index] < 0 then

13: values[index] ← arctan(cols[index + 1] - cols[index])

14: end if

15: end for

16: end for

17: return sparse_representation

Note that the Rectify module uses the sun phase angle to rotate the image and invert

the effect of the vanishing point, the Thresholding module applies a common dynamic
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thresholding algorithm to obtain a binary image, the StepFilter module scans the image

with an edge detector filter with kernel [1,−1] to find the start and end of the shadows,

the CSR module finally encodes the output of the filter in the Compressed Sparse Row

format which can then be used by our algorithm.

This algorithm heavily compresses (ratio ca. 1:500) the content of the image by only

including the location of protruding points and the size of their cast shadow. We will

show that this encoding yields enough information to matching the set of features across

multiple images.

4.2 Feature description

The feature detection algorithm generates a set of keypoints that are anchored to the ge-

ometry of the asteroid. One floating-point value representing the size of the cast shadow

is assigned to each of these points.

The purpose of the feature description pipeline is to transform the shadow size feature

into a high dimensional space which also describes the relation of a given keypoint to

its neighbors. Doing so will allow the matching pipeline to use information about the

geometry of the mesh and the shape of the craters and boulders to infer which features

are matching with one another.

State-of-the-art data-driven feature descriptors use Convolutional Neural Networks

to augment the dimensionality of the input image and extract relevant features from it.

Instead of following this standard approach, we make use of Sparse CNNs directly on

the set of extracted keypoints to significantly boost the performance of the deep learning

model. Indeed, instead of convolving every point of the input image through a set of

filters, we only perform the convolution on the sparse set of extracted keypoints, which

is a lower-dimensional embedding of the image space.
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4.2.1 Convolutional Neural Networks

CNNs have been extensively used in the literature for feature description tasks. These

deep learning layers are used in an encoder/decoder architecture, where features are

extracted and merged at different scales from the input image, before being restored to

their original scale on a higher-dimensional space.

AlexNet was the first recent breakthrough in computer vision. Krizhevsky et al.

[33] introduced the ReLU activation and the Dropout regularization, which allowed

their encoder/decoder architecture to outperform other state-of-the-art algorithms in

image recognition tasks. Its successor VGGNet [34] showed that building a deeper but

network with smaller CNN layers could improve the performance of deep learning models.

We implemented and benchmarked several of variants of this architecture in our

Sparse CNNs but the model’s performance became saturated when using more than 10

layers. Note that VGGNet is also the backbone for the dense SuperPoint [25] feature

detector.

Other feature descriptors use a U-Net [35] encoder/decoder architecture 5, which

maintains skip connections between encoder/decoder layers of the same resolution. This

method is used to maintain a pixel-level accuracy on the location of the features. We

also experimented with this architecture but the use of keypoint encoding in the feature

matching made the context encoding of U-Net redundant and computationally more

expensive.
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Figure 5: U-Net architecture, from [35]

In 2014, GoogLeNet [36] introduced the Inception architecture, which used different

kernel sizes at each layer to allow the model to better propagate gradients across layer

and build deeper networks. [37] have shown that the Inception architecture, the ResNet

architecture or a combination/variant of the two yield similar performance and their

superiority over one another is extremely task-dependent. We therefore only explored

the ResNet architecture to design the COFFEE learned descriptor.

ResNet [38] solves the gradient propagation issue mentioned for VGGNet by introduc-

ing skip connections which add the input to the output around ResNet blocks. In this way,

the model does not learn a function of the input but a residual function F (x) = H(x)−x,

as depicted in figure 6.
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Figure 6: ResNet architecture, from [38]

ResNet bottleneck blocks 7 are used extensively in our COFFEE learned descriptor be-

cause of their computational efficiency and their ability to extract contextual information

from the sparse set of keypoints.

Figure 7: ResNet blocks, from [38]

4.2.2 Sparse CNNs

Our feature description algorithm exploits the unique properties of the keypoints ex-

tracted by the COFFEE classical detector. We observe that these are derived from the

projection of the geometry of the asteroid onto itself through its self-cast shadow. We

encoded the boundaries of this shadow in the detected features. Since the geometry of
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the asteroid is assumed to be made from a continuous mesh, its projection is a continuous

shape and the detected keypoints form a continuous curve.

Instead of describing the input image around these selected keypoints, like most

feature description algorithms do, we leverage the remaining continuity structure of key-

point distribution to create the feature vector. This has the advantage of not requiring

processing the data from the whole image again. Nonetheless, it assumes that enough

information is stored in the distribution of the keypoints to match the features with one

another.

The structure of spatially continuous features is typically extracted through nested

Convolutional Neural Networks, as detailed in 4.2.1. Notwithstanding, using CNNs di-

rectly on our keypoints would be a waste of computational resources since only a very

small subset of the image space is filled by keypoints with an average of 2000 keypoints

for a 1024x1024 pixels image.

This motivates the implementation of a more efficient method to convolve a sparse

set of keypoints through a CNN.

Some research was done on sparse CNNs [39], which perform convolutions on all

sparse points and their neighbors. Although computationally efficient, the resulting

image has an increased number of features, corresponding to the model’s receptive field.

The resulting data loses its sparsity structure in a phenomenon called dilation, as more

and more points are added to the set of points throughout the layers.
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Figure 8: Effect of dilation, from [40]

Sparse Submanifold Convolutional Neural Networks [40] solve this problem by only

providing convolved values on the coordinate locations that were previously in the set.

In this way, the size of the sparse keypoint set remains constant throughout the layers

of the model. Hash tables and precomputed mappings between the layer’s inputs and

outputs makes the sparse submanifold convolutions extremely efficient on modern GPUs.

It is notable that the type of convolutions we use is called submanifold because it

always remains on the set of detected keypoints. In a sense, the 3D geometrical mesh of

the asteroid was projected by the sun as a 2D shadow visible from the camera. We then

designed a keypoint extractor that effectively mapped the boundaries of this 2D shadow

as a sparse set of 1D curves.

4.3 Feature matching

We match the two sets of described features with an attention-based Graph Neural

Network, based on the LightGlue [41] architecture. This type of model define aims at

finding a partial assignment matrix P, such that:

P1n ≤ 1m
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P1m ≤ 1n

Those inequalities encode the fact that all extracted points from image A should have

at most one match in image B and vice-versa.

We make use of a Graph Neural Network to express the geometrical links between

the sets of image points. We create a undirected complete graph G, where each point

is represented as a node. The edges connecting points from image A to image A and

from image B to image B are called self-edges εself and the edges connecting points from

image A to image B are called cross-edges εcross. A state xI
i is assigned to each node for

the image I ∈ {A, B}.

After encoding the keypoint location with the descriptor value, a multi-head attention

layer is applied separately to εself and εcross, so that the state of each node in the graph

can be updated accordingly through message passing [42]. Multiple layers of successive

self-attention and cross-attention are used to build a faithful latent representation of the

underlying scene.

For the self-edges in image I ∈ {A, B}, the self-attention message passing is described

by the equation (2).

xI
i ← xI

i + MLP ([xI
i |mI←I

i ])

mI←I
i =

∑
j∈I

Softmax
k∈I

(aII
ik )jWxI

j

(2)

Here, [·|·] is the concatenation operator, W is a projection operator and aII
ik is the

attention score computed by a rotary encoder on the relative location of the keypoints,

such that

aII
ij = qT

i R(pi − pj)kj (3)

.
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For the cross-edges in image I and J , the cross-attention message passing is described

by

xI
i ← xI

i + MLP ([xI
i |mI←J

i ])

mI←J
i =

∑
j∈J

Softmax
k∈J

(aIJ
ik )jWxJ

j

(4)

A different attention score was used for the cross-attention layer, where aIJ
ij is the

bidirectional attention score.

aIJ
ij = kI

i
T

kJ
j (5)

LightGlue additionally keeps track of a score across the multiple attention layers to

decide if a given node was sufficienly updated or not.

Finally, the feature vectors at the nodes xj
i are used to construct a similarity matrix

M , where the dot product is taken between each pair of features from image A and image

B. A row-wise and column-wise softmax operator is finally applied to convert the matrix

M to a log-score S. The model can thus be trained by minimizing the cross-entropy

between the log-score S and the ground-truth correspondences.

In the COFFEE algorithm, the sparse feature descriptor is jointly trained with the

matching model.

4.4 Pose estimation

Given a set of correspondences between keypoints, it is possible to recover the relative

pose between the camera reference frame and the asteroid reference frame.

This problem is usually formulated as solving the camera pose with respect to a

fixed reference frame, which in our case is the asteroid reference frame. Note that the
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resulting pose estimate has its translation component always normalized, since it is not

possible to know the distance to the asteroid without assuming additional constraints in

the geometry of the asteroid or using additional sensors.

This problem formulation requires solving 5 degrees of freedom. In our case, the

relative motion of the camera reference frame with respect to the initial frame is assumed

to be known between two successive images, implying that the translation component of

the pose should be known. This would reduce the problem to solving only 3 degrees of

freedom. Nevertheless, extensive literature already exists on solving the 5 DoFs problem,

which is why we opted for simplicity in reusing existing research to estimate the asteroid’s

attitude.

Any pair of corresponding features in two views of the asteroid satisfy the epipolar

constraint (6), encoding the fact that each point in 2D from one view must lie on the

so-called epipolar line in the other view.

x′⊤Fx = 0 (6)

Figure 9: Epipolar constraint from [43]. The point X on plane Π is observed from two

perspectives. On the left projection, x is a point. On the right projection, x is a line.

We assume that we know the camera’s intrinsic parameters K and can use this
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information to express the fundamental matrix F in terms of the essential matrix E,

such that

F = K−⊤EK−1 (7)

Moreover, the essential matrix must have a rank of two (8) and have the same non-zero

singular values (9). Those additional constraints are necessary to reduce the number of

degrees of freedoms to 5 (9 DoFs from the 3x3 essential matrix, minus one rank constraint,

minus two singular value constraint, minus one scale ambiguity).

det(E) = 0 (8)

2EE⊤E− trace(EE⊤)E = 0 (9)

Expanding the essential matrix epipolar constraint in (6), we get

x′ie11xi + x′ie12yi + x′ie13 + y′ie21xi + y′ie22yi + y′ie23 + e31xi + e32yi + e33 = 0 (10)

The 5-point algorithm [44] is used to find the relative attitude of the asteroid by

solving (10) under the constraints (8) and (9) up to a scale ambiguity.

The relative pose (R, t) between is then easily recovered through singular value

decomposition since

E = [t]×R (11)

where

[t]× =


0 −tz ty

tz 0 −tx

−ty tx 0

 (12)

is the skew-symmetric matrix representation of the translation vector.
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4.5 COFFEE feature descriptor

The methods and tools mentioned in the previous sections were all used to design our

model architecture. We use an encoder-decoder architecture operating in the submani-

fold space of the points detected by the COFFEE feature detector. Submanifold Sparse

CNNs are used to efficiently encode and decode the features.

A first 3x3 CNN layer is used to extract features at the original scale level. Multiple

layers consisting of one 3x3 downsampling CNN and one ResNet bottleneck layer are

then used in the encoder. Some 3x3 upsampling layers are finally employed to restore

the resolution of the features.

The resulting features are then encoded with their keypoint locations and passed

to the LightGlue architecture. LightGlue applies successive self-attention and cross-

attention layers to the complete graph formed by all keypoints connecting two successive

frames, so that a correspondences between features can be established.

Finally, a classical 5-point algorithm is used to estimate the pose of the asteroid. A

robust Random Sample Consensus (RANSAC) scheme is used in this stage, so that all

potential outliers are filtered out before estimating the final pose.

Figure 10 shows an overview of the complete feature description architecture.
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Figure 10: COFFEE architecture (omitting pose estimation)

4.6 Dataset generation

Data-driven algorithms for image processing require large datasets of high-quality images.

The challenge of this thesis is that the number of such images for small bodies in space

is very little and often affected by the low-resolution and visual artefacts of spaceborne

cameras.
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Most missions to asteroids unfortunately only consist of flybys, preventing the space-

craft to collect significant datasets as the relative velocity between the spacecraft and

the asteroid is in the order of magnitude of several kilometers per second. Additionally,

the number of missions that consisted in a spacecraft hovering and statically observing

an asteroid is so small that it cannot be used to create a dataset that would generalize

to any kind of asteroid.

Table 1 lists the missions that sent a spacecraft to hover an asteroid and that suc-

cessfully returned detailed imagery of its surface.

Mission Year Camera resolution

OSIRIS-Rex 2016 1024x1024

Hayabusa2 2014 1024x1024

Rosetta 2004 1024x1024

Hayabusa 2003 1024x1000

NEAR Shoemaker 1996 537x244

Table 1: Asteroid hovering missions

The limiting factor of all computer vision algorithms, especially data-driven ones, is

the impossibility to prove their generalization to all possible situations because the space

of possible images is too large to train, validate and test algorithms upon. For instance,

a grayscale 8-bits 1024x1024 pixels camera sensor would have a space of 28388608 possible

images. Usually, we employ datasets that represent faithfully the class of images that we

expect to see in order to train, validate and test computer vision algorithms.

Since only four asteroids were exhaustively imaged by the OSIRIS-REx, Hayabusa2,

Rosetta and Hayabusa1 missions, we believe that they might not be representative of

all possible asteroids that could be observed in future missions. Developing algorithms
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using these datasets could create a large bias that would affect their robustness when

observing new unknown asteroids.

Therefore, we decided to opt for the generation of a synthetic dataset of asteroid

images and validate the generative algorithm by visual inspection and comparison with

true images of asteroids taken by spaceborne cameras. Note that no input is given to

generative algorithm: the datasets are generated out of random noise.

The dataset is constructed such that each element consists of a pair of rendered im-

ages alongside with their ground-truth depth with respect to the camera’s image plane.

Within each pair, the asteroid is subject to a random rotation and the resulting camera’s

intrinsic and extrinsic matrices are stored as part of the pair.

The generation of multiple datasets is necessary to obtain evaluation metrics that are

representative of the ability of the model to generalize to situations outside the dataset

on which the model was trained. Four such datasets are therefore generated:

1. The training dataset is a large dataset on which our algorithm will be trained.

2. The validation dataset is a smaller dataset used to compute basic metrics that are

helpful to tune the hyperparameters of the model. It is also used to keep track of

any potential bias introduced towards the training dataset, so-called overfitting.

3. The testing dataset is used to evaluate the model and compute metrics that can

be used to compare our algorithm to other algorithms.

4. The benchmarking dataset consists of rendered images using the shape model of a

real asteroid and a physics-driven rotating motion. This dataset is used to evaluate

the end-to-end pose estimation of the asteroid.

The training, validation and testing dataset are generated by creating several shape

models, i.e. sets of vertices representing the geometry of the generated asteroids. There
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are 256 shape models generated for the training dataset and 32 each for the validation and

testing datasets. For each of these models, an image renderer rotates the asteroid model

randomly and projects its geometry onto the camera frame. Each shape model is used to

render 256 images, after which it is discarded. Limiting the number of images generated

from a single shape model prevents our algorithm from learning the geometry of the

asteroid itself, which would create a bias that would negatively impact our algorithm’s

ability to generalize. The generation hierarchy is summarized in 11.

Figure 11: Hierarchy of the dataset generation.
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Shape model generation The Blender python library, alongside with the MONET

[45] software, are used to generatively create the 320 shape models. Blender is a well-

known rendering software, mostly used to create realistic animations. MONET is a

software which creates realistic shape models of asteroids. MONET is not directly suit-

able for our application because it uses normal maps to render the surface roughness

of the asteroids. Rendering with normal maps, as opposed to fully raytraced rendering,

does not allow for realistic ray-traced shadows, which are crucial for our algorithm.

Base mesh The Blender rock generator is used to create the base mesh of the asteroid.

The parameters of the rock generator are heavily randomized in such a way as to allow

a wide range of possible shapes. Table 2 represents the multiple parameters passed to

Blender to generate the base model.

Parameter Value

Number of rocks 1

Roughness 0

Detail 4

Scale factor U3(1, 3)

Deform U(0, 10)

Table 2: Base mesh properties

The roughness of the generated shape is set to zero, as the roughness will be cus-

tomized later by the MONET shape generator which already adds craters and surface

roughness to the asteroid. The detail level of the asteroid is set to 4, as it is a good

trade-off between shape complexity and quality. Increasing the detail level further would

make the rendering process prohibitively slow.

The scale factor determines the elongation of the asteroid along each of x-y-z dimen-
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sions. Note that the size of the resulting asteroid is normalized by its largest dimension.

Figure 12 shows the effect of different elongation factors.

Figure 12: Multiple scale factors for the bash mesh (from left to right: s=1, s=2, s=3).

The deform factor represents how much entropy is added to the shape of the asteroid,

making it more spherical, as the deform factor is reduced. Figure 13 shows the effect of

different deform factors.
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Figure 13: Multiple deform factors for the bash mesh (from left to right: f=0, f=2, f=10).

For the benchmarking dataset, we use the shape model of the Apophis asteroid [46]

and enhance it by adding craters, surface roughness and boulders, so that the resulting

renderings of Apophis become realistic.

Craters and roughness Realistic shape model requires the addition of features to

the base mesh, such as craters and boulders. Craters and surface roughness are created

by applying a custom material to the base mesh that will displace the surface. The

procedure to generate these features is implemented by the MONET software.

Small and large craters are created by applying Voronoi noise to displace radially

the vertices of the base mesh. Voronoi noise is especially suitable for the generation of

craters since it can be used to create random circular patterns [45].
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Figure 14: Multiple crater scales (from left to right [small crater scale, large crater scale]:

c=[2, 5], r=[5, 10], r=[3, 20]).

The surface roughness is a property that determines the quantity of noise added to

the surface of the asteroid. The roughness makes the asteroid more realistic, as it models

the very small boulders and particles present on its surface. Fractal Perlin noise texture

is generated and scaled according to a roughness value drawn from 3. The effect of this

property is shown for multiple roughness values in figure 15.

Figure 15: Multiple roughness factors (from left to right: r=2, r=5, r=10).
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The craters and surface roughness effectively displace the vertices of the base mesh

by a certain amount. We scale this displacement by a depth property drawn from 3 and

show its effect for multiple depths in figure 16.

Figure 16: Multiple depth factors (from left to right: d=0.1, d=0.3, d=0.5).

The surface roughness, the crater distribution parameters, as well as the depth at

which the displacements are applied are drawn from the distributions stated in table 3.

Parameter Value

Roughness U(2, 10)

Depth U(0.1, 0.5)

Small crater size U(2, 5)

Large crater size U(5, 20)

Table 3: Surface properties

Note that Blender materials do not directly affect the geometry of the mesh and are

instead only applied in the rendering stage. To overcome this issue and gain the ability

to generate an exportable shape model, it is necessary to render the applied material to

a displacement texture and manually displace the mesh’s vertices.

34



Blender incorporates the ability to “bake” a material to a texture by mapping the

displacement vector that represents the craters and surface roughness to a separate “emis-

sion” channel. The challenge of this procedure lies in mapping a curved mesh to a flat

2D texture to which Blender can render the displacement vectors. The mesh is therefore

unwrapped to a flat map by cutting edges that connect faces exceeding a predefined

angle limit.

After baking, the displacement texture can be incorporated as a mesh modifier and

all vertices belonging to the original base mesh are now representing an asteroid with a

realistic crater distribution and surface roughness.

Boulders The MONET software adds boulders using the Blender rock generator. To

mimic the nonuniform distribution of the boulders on the surface of asteroids, three

different sizes of boulders are generated for each model. The number of such boulders

and their size is selected randomly for each of the three classes and is summarized in

table 4.

Parameter Value

Large rock count U(1, 10)

Medium rock count U(10, 100)

Small rock count U(100, 1000)

Large rock size U(0.01, 0.03)

Medium rock size U(0.003, 0.01)

Small rock size U(0.001, 0.003)

Table 4: Boulder distribution properties

All parameters pertaining to the generation of the shape models are summarized in

table 5.
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Parameter Value

Number of rocks 1

Roughness U(2, 10)

Detail 4

Scale factor U3(1, 3)

Deform U(1, 10)

Depth U(0.1, 0.5)

Large rock count U(1, 10)

Medium rock count U(10, 100)

Small rock count U(100, 1000)

Large rock size U(0.01, 0.03)

Medium rock size U(0.003, 0.01)

Small rock size U(0.001, 0.003)

Table 5: Parameter summary for shape model generation

Figure 17 show a few examples of generated shape models, randomly sampled from

the distribution in 5.

Figure 17: Asteroid shape model samples
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4.6.1 Rendering

The shape models can now be used to create realistic images of asteroids under different

viewpoints and illuminations.

Since the algorithm we developed is heavily reliant on realistic shadows, we must

employ a technology called raytracing, which consists of projecting rays from the light

sources to every point on every mesh and record where they intersect with the scene.

One rendering engine natively supporting raytracing is Nvidia Isaac Sim which uses

the raytracing hardware capabilities of Nvidia GPUs. This software is extensively used

in Reinforcement Learning tasks and closed loop simulation in robotics. We decided to

use Isaac Sim because of its tight integration with the Robotic Operating System and

possible extensions of this project to add other sensors, such as Lidars or Radars, and

develop a vision-in-the-loop control system. Additionally, Isaac Sim is extremely efficient

at rendering images of the asteroid, as it only takes 40ms per frame, as opposed to other

rendering engines, such as Blender, which takes up to 20s per frame for similar results.

One frame of the Apophis asteroid, rendered with Isaac Sim, is shown in figure 18.
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Figure 18: Apophis shape model

4.6.2 Dynamics

During the rendering process, the asteroid is rotated into numerous orientations to allow

our algorithm to generalize to different viewpoints. For the training, validation and test-

ing datasets, the asteroid is rendered such that the first frame is captured by setting the

asteroid in a random orientation. The second frame of the pair is captured by randomly

rotating the asteroid from its initial orientation by a random angle. This random angle

is sampled from the following distribution.

Parameter Value

Roll U(0, 0.3)

Pitch U(0, 0.3)

Yaw U(0, 0.3)

Table 6: Orientation Euler-angle difference between successive frames

For the benchmarking dataset, the Apophis asteroid is initially set into a random

orientation with an initial angular momentum.
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4.6.3 Camera model

The camera model used to render the asteroid is a pinhole camera. The camera parame-

ters are listed in table 7.

Parameter Value

Pixel size 3um

Focal length 3.072mm

F-number f/16

Focus distance 2.5m

Table 7: Camera parameters

In practice, carful identification of the camera’s intrinsic parameters must be per-

formed to avoid any distortion of the resulting images.

The output of the cameras are one grayscale 8-bits image and a 32-bits depth map. Both

render products have a resolution of 1024x1024 pixels.
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5 Quantitative results

Our algorithm is compared against other state-of-the-algorithms in terms of performance

metrics, computational efficiency and accuracy of the complete attitude estimation

pipeline. Each of the algorithms used to compare our algorithm against is tuned to

perform optimally on our validation dataset, so that the bias in comparing the differ-

ent algorithms is minimized. It is expected that the learning-based algorithms perform

better in terms of performance metrics but are slower than their classical counterparts.

With our algorithm, we aim to generally outperform the classical algorithms in terms of

accuracy, while still having a higher computational efficiency that data-driven algorithms.

The benchmarking algorithms are the following:

1. SIFT [47]

2. ORB [48]

3. AKAZE [49]

4. Superpoint [25]

5. ContextDesc [30]

6. Disk [27]

7. LFNet [26]

8. R2D2 [29]

5.1 Performance metrics

Since we store the relative camera pose for each image pair and the depth map for each

image, it is possible to find the ground-truth correspondences by reprojecting all points

from the first image to the second image. If the location of two keypoints after reprojec-

tion is less than a given threshold, they are said to correspond to one another. Section
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7.7.1 details how such a ground-truth correspondence matrix G can be derived. Each

element Gij equals one if the feature i in image A truly matches the feature j in image

B. Otherwise, it is zero.

After feature matching, a matrix corresponding to the match probabilities is estab-

lished. A criterion, such as a threshold, a row-wise maximum, a K-best selection or a

Lowe-ratio [47] can be used to obtain a matrix of predicted matches M . Each element

Mij equals one if the feature descriptor i in image A is predicted matches the feature

descriptor j in image B. Otherwise, it is zero.

Having the ground-truth correspondence matrix and a matrix of predicted matches,

we can compute the precision, recall and F1 score for the COFFEE description pipeline,

as well as for other benchmarking feature description algorithms. Tuning a feature

description algorithm or the matching criterion typically increases the precision but de-

creases the recall or vice-versa. The F1-score overcomes this bias by introducing a metric

that computes the harmonic mean between precision and recall. For completeness, the

precision P , recall R and F1-score F1 are defined as follows:

P =
∑

i,j GijMij∑
i,j Mij

(13)

R =
∑

i,j GijMij∑
i,j Gij

(14)

F1 = 2 · P · R
P + R (15)

The K-best features are selected for multiple K ∈ 100, 200, 500 and the precision of

all algorithms are stated in table 8. The precision of the feature matching pipeline for a

fixed number of features is interesting because only a few correspondences are needed to

estimate the pose of the tumbling asteroid.
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Algorithm Precision (K=100) Precision (K=200) Precision (K=500)

COFFEE (ours) 82.5% 77.5% 68.1%

Superpoint 69.4% 52.9% 30.4%

ContextDesc 47.1% 45.1% 37.3%

Disk 67.5% 57.4% 41.3%

LFNet 16.2% 14.1% 10.7%

R2D2 16.9% 15.0% 10.9%

SIFT 17.4% 14.8% 10.8%

ORB 5.2% 4.3% 3.1%

AKAZE 9.4% 8.0% 5.1%

Table 8: Precision for a given number of features (best in bold)

Some algorithms do not yield a normalized score for each row, implying that multiple

matches could be found for the same feature, which is not possible. To prevent skewing

the results, we can apply the Non-Maximal Suppression algorithm [47], which discards

matches that do not have a significantly higher score than the second-best matches. The

ratio separating the best-matches from the second-best matches is called the Lowe-ratio.

For multiple Lowe-ratio, we state the precision, recall and F1-score in tables 9, 10 and

11.
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Algorithm Precision Recall F1-score

COFFEE (ours) 54.2% 48.6% 51.2%

Superpoint 32.3% 46.4% 38.1%

ContextDesc 26.3% 35.3% 30.1%

Disk 43.4% 50.0% 46.5%

LFNet 29.6% 46.4% 36.2%

R2D2 14.2% 23.0% 17.5%

SIFT 9.5% 13.8% 11.2%

ORB 4% 3.2% 3.5%

AKAZE 5.7% 6.6% 6.1%

Table 9: Precision, recall and F1-score for a Lowe ratio of 1.0 (best in bold)

Algorithm Precision Recall F1-score

COFFEE (ours) 54.7% 48.1% 51.1%

Superpoint 59.8% 30.7% 40.5%

ContextDesc 71.8% 21.2% 32.5%

Disk 90% 27.3% 41.7%

LFNet 68.1% 28.1% 39.6%

R2D2 75.6% 1.8% 3.5%

SIFT 22.7% 9.3% 13.2%

ORB 13.3% 1.0% 1.8%

AKAZE 17.0% 2.6% 4.4%

Table 10: Precision, recall and F1-score for a Lowe ratio of 0.9 (best in bold)
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Algorithm Precision Recall F1-score

COFFEE (ours) 55.3% 47.5% 51.0%

Superpoint 81.3% 13.0% 22.3%

ContextDesc 91.6% 6.8% 12.5%

Disk 96.4% 9.6% 17.4%

LFNet 85.4% 13.8% 23.5%

R2D2 93.3% 0.1% 0.2%

SIFT 39.2% 5.6% 9.7%

ORB 19.7% 0.2% 0.4%

AKAZE 32.3% 0.8% 1.6%

Table 11: Precision, recall and F1-score for a Lowe ratio of 0.8 (best in bold)

The COFFEE algorithm outperforms most of the other algorithms in terms of pre-

cision, recall and F1-score. However, state-of-the-art deep learning algorithms have a

better precision when using the Lowe ratio 0.9 and 0.8 and the Disk algorithm, in par-

ticular matches the precision and recall of COFFEE for a Lowe ratio of 0.9 and 1.0.

Note that COFFEE was trained exclusively on synthetic space imagery, which is not

the case of the other algorithms, which may suffer from a domain gap and weaken their

precision/recall metrics.

5.2 Parameter-invariant metrics

Most metrics derived in the previous section derive from a parameter set arbitrarily, such

as the number K for which the K-best matches are selected, or the matching threshold.

This particularly affects the precision and recall metrics by increasing the precision and

decreasing the recall and vice-versa. The F1-score, employed in the previous section, is

the harmonic mean between precision and recall and is designed to avoid the precision-

recall trade-off analysis. Nevertheless, it is not necessarily an absolute metric on the

quality of a feature matching pipeline.
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There are two methods to assess the performance of the algorithms without being

affected by this induced bias. One of these is plotting two dependent metrics, such as the

precision and the recall, as sweeping through the matching threshold parameter. The

other method consists in computing the Area Under the Curve (AUC) produced by this

sweep, as it is invariant to the matching threshold.

The Receiver Operating Characteristic is plotted for multiple algorithms in figure 19.

The ROC metric is usually used to illustrate the performance of a binary classifier and

plots the recall (true positive rate) against the false positive rate.

Figure 19: Receiver Operating Characteristics for all benchmarked algorithms

The ROC curve shows that most deep-learning descriptors perform better than clas-

sical descriptors and that the COFFEE descriptor shows better characteristics than the

other benchmarking algorithms. The Precision-Recall curves for multiple algorithms are
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plotted in figure 20.

Figure 20: Precision-Recall curve for all benchmarked algorithms

Similarly, the PR curve shows that most deep-learning descriptors perform better

than classical descriptors and that the COFFEE descriptor shows better characteristics

than the other benchmarking algorithms.

The Receiver Operating Characteristics AUC and the Precision-Recall AUC metric

is computed for each algorithm in table 12, alongside with their optimal F1-score.
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Algorithm Best F1-score ROC AUC PR AUC

COFFEE (ours) 54.7% 54.2% 99.9%

Superpoint 28.4% 17.6% 98.6%

ContextDesc 30.3% 18.4% 98.0%

Disk 20.8% 12.2% 97.5%

LFNet 9.6% 5.9% 98.5%

R2D2 14.6% 5.9% 90.4%

SIFT 9.1% 2.8% 85.2%

ORB 3.5% 0.7% 70.3%

AKAZE 2.5% 0.2% 67.6%

Table 12: ROC AUC, PR AUC and optimal F1-score for multiple algorithms (best in

bold)

5.3 Pixel error

The quality of the pose estimation algorithm is directly related to the ability of the

matching algorithm to accurately locate corresponding keypoints. The pixel error, de-

fined as the median L2 distance between matching keypoints, must be minimized.

We compare the baseline SOTA algorithms with our algorithm by plotting the pixel

error against the number of matches in 21. Matches are ranked and selected based on

their matching score.
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Figure 21: Median pixel error for multiple algorithms

In this configuration, the COFFEE algorithm is one or two orders of magnitude more

accurate than any other feature descriptor. We however note that the marked presence of

outliers in the benchmarking algorithms can be mitigated by introducing the Lowe-ratio

criterion [47], so that the pixel error becomes as in figure 22.
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Figure 22: Median pixel error for multiple algorithms with a Lowe ratio of 0.9

The median pixel error then becomes comparable to the Disk [27] and ContextDesc [30]

deep learning feature descriptors at a subpixel accuracy. At a low number of points, the

Superpoint [25] also achieves subpixel accuracy. We conclude that these three algorithms

will likely be the most suitable for the pose estimation algorithm.

5.4 Pose estimation error

We estimate the pose of the asteroid by applying the 5-point algorithm, recovering the

essential matrix and inferring the relative rotation matrix and pose, as explained in 4.4.

Even though any set of 5-points in the match matrix could be used to recover the pose, a

robust scheme should be employed to avoid any outlier during the estimation of the pose.

We make use of a Random Sample Consensus (RANSAC) [50] scheme with a reprojection

threshold of one pixel and a success probability of 99.9The resulting estimation errors are

stated in following tables for the benchmarking algorithms and COFFEE. We select the

K-best matches K ∈ 100, 200, 500, 2000 before applying the pose estimation algorithm.
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Algorithm Error [rad] Standard deviation [rad]

COFFEE (ours) 0.029 0.018

Superpoint 0.041 0.020

ContextDesc 0.13 0.12

Disk 0.20 0.29

LFNet 0.62 0.85

R2D2 0.12 0.089

SIFT 0.29 0.37

ORB 0.81 0.96

AKAZE 0.41 0.48

Table 13: Pose estimation bias and std dev. for the best K=100 features (best in bold)

Algorithm Error [rad] Standard deviation [rad]

COFFEE (ours) 0.024 0.022

Superpoint 0.066 0.057

ContextDesc 0.083 0.093

Disk 0.17 0.091

LFNet 0.34 0.65

R2D2 0.096 0.087

SIFT 0.28 0.66

ORB 1.05 1.07

AKAZE 0.31 0.29

Table 14: Pose estimation bias and std dev. for the best K=200 features (best in bold)
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Algorithm Error [rad] Standard deviation [rad]

COFFEE (ours) 0.028 0.021

Superpoint 0.061 0.042

ContextDesc 0.061 0.049

Disk 0.15 0.14

LFNet 0.11 0.12

R2D2 0.064 0.061

SIFT 0.095 0.077

ORB 0.61 0.69

AKAZE 0.50 0.56

Table 15: Pose estimation bias and std dev. for the best K=500 features (best in bold)

Algorithm Error [rad] Standard deviation [rad]

COFFEE (ours) 0.034 0.027

Superpoint 0.038 0.026

ContextDesc 0.050 0.037

Disk 0.088 0.080

LFNet 0.068 0.066

R2D2 0.061 0.046

SIFT 0.12 0.099

ORB 0.41 0.54

AKAZE 0.20 0.12

Table 16: Pose estimation bias and std dev. for the best K=2000 features (best in bold)

The main observation from these results is that only deep-learning feature descriptors

can estimate the pose of the asteroid, at a low number of features. When increasing this

number to K = 500, the SIFT feature descriptor starts showing good results with an

error of 0.095 [rad] and a standard deviation of 0.077 [rad].
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In all cases, the classical feature descriptors perform significantly worse that COFFEE,

which has an error always less than 0.04 [rad] and a standard deviation always less than

0.03 [rad].

5.5 Computational efficiency metrics

A crucial aspect of this project is to design a fast attitude estimator with low memory

requirements, so that it can be used on spacecraft. Although parallel computing hard-

ware, in particular GPUs, have seen a swift increase in performance and memory size in

the recent years, space hardware remains years behind the current state-of-the-art. This

is mainly due to the conservative requirements for space hardware, the slow process of

verifying and validating these requirements, as well as the harsh conditions of the space

environment.

To do so, our algorithm is compared against other state-of-the-art detectors, by run-

ning the algorithms on similar GPUs and similar operating conditions. The execution

time is recorded for each algorithm and listed in table 17. The algorithms are tested a

desktop computer with a Nvidia Titan RTX GPU and a 20-cores Intel Core i9-7900X.
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Algorithm Execution time [ms]

COFFEE (ours) 14.2

Superpoint 52.3

ContextDesc 397

Disk 97.1

LFNet 44

R2D2 490

SIFT 12.2

ORB 4.4

AKAZE 5.6

Table 17: Execution time for each algorithm (best in bold)

As expected, classical feature descriptors run generally faster than their deep learned

counterparts due to their complexity. The execution time of COFFEE is in the same

order of magnitude than some classical feature descriptors, such as SIFT (14.2ms vs

12.2ms), which makes it suitable for real-time applications. We also observe that COF-

FEE is at least 3x faster than any other deep learned feature descriptor.

The trade-off between overall pose estimation accuracy and runtime in figure 23 shows

that the COFFEE algorithm is much faster than the other deep learning algorithms

but much more accurate than other classical algorithms. We have pushed the pareto

optimum in the runtime-accuracy tradeoff and designed an algorithm that leverages the

advantages of both classical and learned algorithms to obtain a light pipeline usable in

space applications.
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Figure 23: Trade-off between runtime and accuracy

Even with all these results highlighting the advantages of COFFEE over other algo-

rithms, we must bear in mind the following points:

1. COFFEE was specifically trained on a synthetic dataset from images of asteroids,

which might be a significant advantage compared to other algorithms that are more

general. Ideally, one would train the Superpoint, Disk, LFNet, ContextDesc and

Disk algorithms on the asteroid image dataset. One would probably then expect

to see the deep learning algorithms outperform COFFEE. The point however is

not that COFFEE performs better than other deep learning algorithms, it is that

COFFEE is faster than any deep learning algorithm, while outperforming classical

algorithms.

2. The execution time listed in this section only pertains to the feature description

and not to the feature matching. This decision was made to avoid penalizing

feature descriptors that yield a high number of matches, as the matching time is
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generally quadratic in the number of features. One could argue that this advantages

COFFEE, as the matching pipeline is more complex due to the attention mechanism.

In practice however, we observed than the feature matching only added an average

of 10ms to the overall execution time compared to standard matching methods.
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6 Qualitative results

In this section, we show the intermediate results of the COFFEE pipeline as rendered

images, to qualitatively assess the performance of the algorithm.

6.1 Feature detection

Figure 24 shows renderings of the Apophis asteroids. The COFFEE detector extracts

information about the shadow on the projection of the rays emanating from the sun.

Here, the sun phase angle is 90°, implying that the vanishing point is infinitely east, and

that all shadows are cast from the left to the right in the camera’s reference frame. The

orange points on the rendering show the location of the detected keypoints.

Figure 24: Keypoints detected by the COFFEE algorithm
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6.2 Feature description

Figure 25 assigns a highly descriptive feature descriptor to each of the detected keypoints.

The 256-dimensional feature space is randomly projected to the RGB color space to ease

visualization.

Figure 25: Features described by the COFFEE algorithm

6.3 Feature matching

Figure 26 finds correspondences between two sets of description vectors in successive

frames. As with the feature description, the 256-dimensional feature space is randomly

projected to the RGB color space to ease visualization.
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Figure 26: Features matched by the COFFEE algorithm
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7 Implementation

A versatile software implementation to train and evaluate our algorithm is provided as an

open-source project, under MIT license [51]. Python 3 was used to develop the pipeline,

alongside with several custom CUDA modules to speed up the pipeline. The following

open-source python libraries were used:

1. Numpy 1.26.4 [52]

2. Numpy quaternion 2023.0.3

3. OpenCV 4.9.0

4. PyTorch 2.2.2 [53]

5. ROS2 Humble [54]

6. Pandas 2.2.1 [55] [56]

7. Matplotlib 3.5.1 [57]

8. MinkowskiEngine 0.5.4 (Forked to add support for CUDA 12) [58] [59] [60]

9. Nvidia Omniverse API

7.1 Architecture

Every step in our pipeline is designed as a standalone python module. All python modules

can communicate with each other through so-called frontends. Frontends are abstract

interfaces that allow modules to receive input messages and send output messages. The

frontend’s high-level of abstraction allow a transparent communication, even if the al-

gorithm’s modules run through a ROS interface or even if they are not running on the

same machine.

Apart from the simulation, the whole training and evaluation pipeline is embedded

into a ROS2 environment, which creates a python sandbox and provides a build system
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for all modules. Launch files and configuration files facilitate the integration between

the modules. The simulation module requires its own python sandbox, as shipped with

Nvidia Isaac Sim, which prevents us from using the same build system for all modules.

The evaluation pipeline is divided into four stages: feature description, motion synthe-

sizing, feature matching and benchmarking. Our algorithm, as well as the other baseline

algorithms, all comply with this pipeline.

For a given description algorithm, the feature description stage selects a set of key-

points and describes them. The keypoint detection and description are aggregated into

this stage.

The motion synthesizing stage is common to all algorithms and pairs two feature sets

into a single message for the next stage.

For a given matching algorithm, the feature matching stage finds correspondences

between the two feature sets created in the motion synthesis stage.

The benchmarking stage finally evaluates the found matches by comparing them

to ground-truth correspondences. This last stage generates plots, tables and outputs

relevant metrics.

Our learning pipeline is slightly different from the evaluation pipeline, in the sense

that it aggregates all the learnable parts of the algorithm into the feature matching stage,

so that we can benefit of a significant speed-up in the learning process. Note that this

approach does not affect the performance of our algorithm, since the feature descriptor

processes images one by one. This description stage can therefore be seamlessly inter-

changed with the motion synthesis.
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The whole pipeline for training and evaluation are depicted in figure 27.

Figure 27: Software architecture

7.2 Messages

A key enabler for the inter-module communication system is the concept so-called mes-

sages. These are simple structures that are library-independent and portable across

multiple versions of pythons. These structures are said to be “pickleable”, as they can be

transformed into binary structures by the pickle module in the python standard library.

The advantage of using such a structure is that modules can communicate by transmit-

ting this binary structure through the filesystem, through the local network or through

the ROS2 DDP network.

A dedicated message was designed for each module interface and is summarized in

figure 28. The astronet_msgs package contains the source code for all messages.
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Figure 28: Types of messages that can be transmitted/received through the frontends

The ImageData message collects all sensor information and ground-truth data gener-

ated from the simulation. A versatile structure was designed, such that additional sensors

can be added to the message without affecting the backward compatibility of the message.

The FeatureData message has a similar structure to the ImageData message but

contains a sparse set of features and keypoints instead of the dense image and depth

maps. Each keypoint contains the depth value extracted from the depth map in its third

dimension, so that the keypoint is effectively expressed as a 3D point in the camera

reference frame.

The MotionData message removes all information about the sensors present on the

spacecraft and instead contains only the sparse feature data for a pair of frames. It specif-

ically contains the sparse set of keypoints, depths and features, as well as the projection

matrix to pass from one frame to another.
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7.3 Frontends

Three different frontends were developed to allow the numerous modules to send mes-

sages to each other: Drive, TCP and ROS. The astronet_frontends package contains

the source code for all frontends.

The Drive frontend stores the messages into a persistent filesystem, such as the com-

puter’s hard drive. The advantage of this frontend is that all elements from the datasets

are simultaneously stored and can be retrieved very efficiently. For instance, this is

advantageous if we do not want to create a simulation dataset on the fly, which spares a

significant amount of computing power and speeds-up the whole pipeline.

The TCP frontend allows to have a real-time pipeline between multiple computers.

This could be used if we have multiple computers contributing to the pipeline, such

as one computer simulating the asteroid images and another one running the attitude

estimation algorithm.

The ROS frontend allows a low-latency communication between elements of the

pipeline. This will be useful in the future for the development of a vision-in-the-loop

control system, which would require real time access to simulation data and closed-loop

feedback to the simulator.

When training our algorithm, the drive frontend is used to store intermediate datasets

without the need of regenerating them every time. Nevertheless, accessing sequentially

elements from the dataset can significantly slow down the learning process. To overcome

this limitation, we developed a wrapper that can encapsulate any frontend and provide

parallel access to the wrapped resources. The use of multiple processes and synchroniza-

tion mechanisms through the python multiprocessing library ensures a minimal access

latency, which is a critical step to optimize the performance of our training pipeline.

63



7.4 Simulation

Nvidia Isaac Sim is used to generate realistic renderings of the asteroids. The USD model

exported from Blender is incorporated into an Nvidia Omniverse scene and rendered

with raytracing.

Although the Simulation module is uses a different python environment that the rest

of the pipeline, it still makes use of the frontend and messaging architecture described

in sections and .

The module’s parameters can be configured according to table 18.

Parameter name Description

type Type of frontend used

path Path identifier to which the frontend is connected

dataset_size Number of images that must be rendered

mode Target dataset. Can be one of train, validate, test.

Table 18: Simulation module parameters

The module outputs rendered data as a list of ImageData messages in the specified

frontend. Frames are generated sequentially by first loading an asteroid USD model,

adding it to the scene, changing its orientation and rendering the frame. The simulator

is designed is such a way that the environment or spacecraft configuration can be easily

changed, thanks to a modular software architecture, depicted in 29.
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Figure 29: Simulation architecture

The Environment, StaticObject, DynamicObject and Robot classes define the abstrac-

tions necessary to render a scene. The Environment contains all renderable objects in

the scene. The StaticObject class defines elements of the scene which are not expected

to change over time, such as the Sun in the SpaceEnvironment. The DynamicObject

class defines moving objects in the scene, such as the Asteroid in the SpaceEnvironment.

Finally, the Robot class is an abstraction that encompasses a set of sensors centered at a

given location, such as the Spacecraft, which contains a single StandardCamera sensor.

Finally, the SpaceEnvironement and Spacecraft classes are integrated with Isaac Sim’s

pipeline and frames are rendered.

7.5 Feature description

The feature_descriptor module transforms the ImageData from the simulator by extract-

ing a set of relevant keypoints and assigning a description vector to each of them. This

module provides a universal interface that can be used in junction with any state-of-the-

art detection and description algorithm. Table 19 lists all configuration parameters for
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the feature_description module.

Parameter name Description

input.type Type of frontend used for the input

input.path Path identifier to which the input frontend is connected

output.type Type of frontend used for the output

output.path Path identifier to which the output frontend is connected

backend Feature description algorithm to use

dataset_size Number of images that must be described

mode Target dataset. Can be one of train, validate, test.

Table 19: Feature description module parameters

The feature description module takes a list of ImageData as an input through the

input frontend and outputs a list of FeatureData through the output frontend. The

feature_descriptor module provides a Backend class, to which all feature descriptors

must comply. This class contains a single abstract method detect_feature that must be

implemented by all feature descriptors. This method takes an image as an input and

outputs the set of detected keypoints and their descriptors.

7.6 Motion synthesis

The purpose of the motion_synthesis module is to create pairs of two successive Feature-

Data. This will allow the feature matcher to compare the features of the two successive

frame and find a set of correspondences. Table 20 lists all parameters that can be set in

the motion synthesis module.
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Parameter name Description

input.type Type of frontend used for the input

input.path Path identifier to which the input frontend is connected

output.type Type of frontend used for the output

output.path Path identifier to which the output frontend is connected

dataset_size Number of images that must be described

mode Target dataset. Can be one of train, validate, test.

Table 20: Motion synthesizer module parameters

The feature description module takes a list of FeatureData as an input through the

input frontend and outputs a list of MotionData through the output frontend.

7.7 COFFEE trainer

Our description and matching pipeline are jointly trained using PyTorch [53], a deep-

learning auto-differentiation library. The coffee_nn package contains all code related to

training our algorithm. The pipeline parameters required by this module are stated in

table 21.

Parameter name Description

input.type Type of frontend used for the input

input.path Path identifier to which the input frontend is connected

train_size Size of the training dataset

validate_size Size of the validation dataset

descriptor_config.model_path Path to store the best weights of the descriptor model

matcher_config.model_path Path to store the best weights of the matcher model

Table 21: COFFEE trainer module parameters

The input dataset is first normalized, batched and uploaded to the GPU. For each

batch, an optimizer attempts at find the optimal weights that minimize a given non-

convex loss function through gradient descent. The gradients are first initialized to zero.
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Then, a forward pass computes the predicted matches by our description and matching

model. Pytorch takes care of computing the gradients of every operation by the chain

rule. After the forward pass, the loss function is computed and used to compute the

gradients of the weights in a backward pass. An Adam optimizer is used to update the

weights of the model given the gradients previously computed. The Adam algorithm

keeps track of an optimal learning rate for each model weight [61]. The maximum allowed

learning rate is set to 10−5, as this hyperparameter helped the loss function to converge

reliably. The learning rate is scheduled to decay exponentially at a rate of 0.95 per epoch.

All hyperparameters are summarized in table 22.

Parameter name Value

Batch size 8

Learning rate 10−5

Learning rate decay 0.95

Epochs 50

Table 22: Training hyperparameters

7.7.1 Loss function

The description and matcher models are aggregated into a common training pipeline. A

single loss function is therefore computed from the output of the matcher model and

gradients are propagated from the loss through the matcher model to the descriptor

model. For a given image pairs, the data points A and B must be matched. A contains

n features, whereas B contains m features. The keypoints, input features, ground-truth

depths are denoted as follows respectively.

xA ∈ [0, 1024]2×n, xB ∈ [0, 1024]2×m

fA ∈1×n, fB ∈1×m

dA ∈1×n, dA ∈1×m
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Additionally, each image pair stores two matrices to recover the relative projection

between the two viewpoints. The intrinsic and extrinsic matrices are denoted as follows

respectively.

K ∈4×4, M ∈4×4

The descriptor model g : (x, f) → (x, f ′) transforms the input features into described

features f ′A and f ′B, where f ′A ∈256×n and f ′B ∈256×m. The described features are then

forwarded to the matcher model h : (xA, f ′A, xB, f ′B)→ SAB, where SAB is a score matrix

for which each entry sij , 0 ≤ i ≤ n, 0 ≤ i ≤ m represents the probability that the feature

i of input A corresponds to the feature j of input B. The last row and columns of the

score matrix S are called the dustbin entries, since they represent the probability that a

given feature does not have any match on the other input. This score matrix contains the

prediction of our models and must be compared against the ground-truth score matrix.

The latter is computed by projecting all points of input A to the viewpoint of input

B. To this end, the input A’s screen coordinates are extended with their depth values

and transformed from the A frame to the B frame through the camera’s intrinsic and

extrinsic matrices. The keypoint location xA can be expressed in the B reference frame

as follows:

xB
A = PKBMBM−1

A K−1
A (xA|dA)

where P is the projection operator

P = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))

xA|dA denotes the concatenation of the 2D keypoint location and their depth value. We

can then build the distance matrix D such that each element dij is defined as:

dij = ||xA
B,i − xB

B,j ||

where ||.|| denotes the L2 Euclidean distance. To determine if the keypoints from input

A and B correspond to each other in the same reference frame, we compare their distance

to the unit length. If two keypoints are closer than one pixel, they are said to correspond

with one another. Additionally, the LightGlue architecture enforces the constraint that
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there is at most one correspondence for each keypoint. Therefore, for each row in the

ground-truth matrix, only the minimum distance match is kept. The matrix thus obtained

is concatenated with a dustbin row and column, so that each row or column that does

not contain any match has a unit value in its dustbin. This full criterion is applied to

the distance matrix D and is denoted as the match matrix C = c(D). The loss function

used to train our algorithm is the cross-entropy loss, which can be computed with the

score S and the ground-truth matches C such that:

L = −
∑

i

∑
j

sijcij

Regularization of the loss function is achieved by introducing a uniform noise to the

ground-truth match matrix C.

7.7.2 Online domain randomization

The synthetic dataset already performs offline domain randomization by sampling from

a distribution to select the asteroid’s base mesh, its surface roughness, orientation and

motion, as well as the number and size of craters and boulders. Additional domain ran-

domization can be performed by transforming the detected keypoints and features before

learning from them. Before passing the data through the descriptor model, gaussian

noise is added to the normalized features. Moreover, all keypoints are transformed by

a random translation, scaling and rotation before passing through the matcher model.

Note that the keypoint transformation is applied only after passing through the descriptor

model, since the convolutional neural network are by design not scale-invariant. The

distributions used for the online domain randomization are stated in table 23.

Parameter name Value

Feature value N(0, 0.1)

Scale N2(1, 0.5)

Translation N2(0, 512)

Rotation U(0, 2π)

Table 23: Distributions for online domain randomization
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7.8 Benchmarking

The benchmarking module evaluates an algorithm against a given dataset by computing

essential statistics about the ability of an algorithm to predict correct matches. The

feature matching algorithm and matching criterion is also passed to this module, as it

must sweep through multiple matcher configurations to produce the Precision-Recall

or the Receiver Operating Characteristics for instance. All configurable parameters are

stated in table 24.

Parameter name Description

input.type Type of frontend used for the input

input.path Path identifier to which the input frontend is connected

output.path Path to which to write the resulting plots and tables

size Size of the benchmarking dataset

config.features.matcher Type of feature matching algorithm to use

config.features.criterion Type of criterion to produce the match matrix

config.features.criterion_args Initial value for the sweepable criterion

Table 24: Benchmarker module parameters

This module outputs a set of plots, tables and figures that pertain to the quantitative

and qualitative results shown in 5 and 6 respectively.
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8 Conclusion

By carefully analyzing the effect of self-cast shadows on asteroids, we found an efficient

algorithm to extract keypoints from images taken onboard a spacecraft. The 3D ge-

ometry of the asteroid, embedded in a 2D shadow and extracted as a 1D boundary

proved to be sufficiently informative to recover the pose of the asteroid. To this end,

we designed a deep-learning model to efficiently capture all information about this 1D

boundary. Employing a Residual Network architecture, implemented as a Submanifold

Sparse Neural Network, we could describe each extracted keypoint by a unique FP-256

vector. An attention-based mechanism, alongside with a Graph Neural Network, was

then used to find feature correspondences between the two images. A robust RANSAC

scheme was then applied with the 5-points algorithm to finally infer the relative pose of

the asteroid between subsequent frames.

In addition to qualitative results, we provided quantitative metrics proving that our

algorithm performed better than classical algorithms in terms of precision, recall, F1

score, ROC AUC, PR AUC and other metrics. The benchmarking dataset was generated

with the observed shape models of the Apophis asteroid and enhanced by adding craters,

boulders and surface roughness to it. Moreover, COFFEE runs at least 3x faster than

the other benchmarked deep-learning algorithms.

We nevertheless acknowledge that the large domain gap faced by the deep learning

benchmarking algorithms could have slightly skewed the results in our favor, but this

does not affect any conclusion regarding the higher computational efficiency of COFFEE.

We believe that the absolute accuracy in pose estimation and the very fast runtime of our

method could make it a good candidate for future asteroid missions during their orbit

synchronization and final approach phase.

This research could be extended by exploring the benefits of online domain adaptation

for the pose estimation pipeline and integrating the latter within a complete Simultaneous
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Localization and Mapping (SLAM) system to increase the robustness and accuracy of

the method. Moreover, COFFEE could be integrated in a complete vision-in-the-loop

control system, so that the robustness and efficiency of our method would benefit the

whole navigation stack of the spacecraft.
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