

Why tumbling bodies?

- Asteroids do not generally have a uniform inertia matrix
- Dzhanibekov effect: Unstable rotation around second principal axis
- Chaotic motion impossible to predict in the long term according to Euler equations

Why tumbling bodies?

- Asteroids do not generally have a uniform inertia matrix
- Dzhanibekov effect: Unstable rotation around second principal axis
- Chaotic motion impossible to predict in the long term according to Euler equations

$$I_x \dot{\omega}_x + (I_z - I_y)\omega_y \omega_z = 0$$

$$I_y \dot{\omega}_y + (I_x - I_z)\omega_z \omega_x = 0$$

$$I_z \dot{\omega}_z + (I_y - I_x)\omega_x \omega_y = 0$$

$$I_x < I_y < I_z, \quad \omega_y \gg \omega_x, \omega_z$$

$$\ddot{\omega}_x = \lambda \omega_x, \quad \ddot{\omega}_z = \lambda \omega_z, \quad \lambda > 0$$

Why pose estimation?

- Future space missions may require orbit synchronization to a tumbling asteroid
- Standard model-based filters are not sufficient because of the chaotic process
- Instantaneous pose estimation is therefore required

Challenges

- The lack of atmosphere make shadows extremely dark
- Asteroids are textureless and do not diffract light
- Rigid bodies can tumble very quickly

Standard approach

- Detect a sparse set of salient keypoints (contours and edges)
- Describe the keypoints by analyzing their neighborhood and assign a high-dimensional descriptor
- Find correspondences between feature descriptors in successive frames
- Estimate the pose by solving the 6DoF projection equation

Why not SIFT?

Why not Superpoint?

Estimation bias

Caltech

$$v = \begin{bmatrix} f_x \tan(\phi) \\ 0 \end{bmatrix}$$

Vanishing Point

- The sun-phase angle is known thanks to the onboard sun-tracker
- All shadows are cast towards a vanishing point
- Scan through the rays of the image, find edges and encode features as keypoints, shadow size as descriptors

- The sun-phase angle is known thanks to the onboard sun-tracker
- All shadows are cast towards a vanishing point
- Scan through the rays of the image, find edges and encode features as keypoints, shadow size as descriptors

Algorithm 1 COFFEE detector

```
    Input: input dense image, φ sun phase angle

 2: Output: output, sparse image

 rectified ← Rectify(input, φ)

 4: thresholded ← Thresholding(rectified)
 5: filtered ← EdgeFilter(thresholded)
 6: compressed, crows, cols ← CSR(filtered)
 7: for each row i do
      for each column j do
        start_idx \leftarrow crows[row_idx]
        end_idx \leftarrow crows[row_idx + 1]
10:
        index +- start idx + col idx
11:
        if compressed [index] < 0 then
12:
          values[index] \leftarrow arctan(cols[index + 1] - cols[index])
13/
        end if
      end for
16: end for
17: return sparse_representation
```


- The sun-phase angle is known thanks to the onboard sun-tracker
- All shadows are cast towards a vanishing point
- Scan through the rays of the image, find edges and encode features as keypoints, shadow size as descriptors

- Shadow-size encoding as feature descriptor is not enough
- Exploit the remaining structure of the keypoints through a neural network

COFFEE descriptor

- Use Sparse Submanifold CNNs to extract additional structural information
- Exploit the remaining structure of the keypoints through a neural network
- Inference complexity is reduced from O(mns²) to O(mns) for each CNN layer

COFFEE descriptor

- Several NN-architectures were tested (VggNet, U-Net, Inception)
- ResNet-Bottleneck layers happened to be the best candidates
- FP256 feature descriptors are assigned after 17 SCNN layers

Feature matching

- No large-scale contextual information is added during the description
- Add keypoint location encoding and apply attention mechanism
- Extremely efficient off-the-shelf architecture LightGlue

Figure 3. The LightGlue architecture. Given a pair of input local features (d, p), each layer augments the visual descriptors (s. e) with context based on self- and cross-attention units with positional encoding \odot . A confidence classifier e believe decide whether to stop the interference. If few points are confident, the inference proceeds to the next layer but we pruse points that are confidently sumunitable (once a confident state if mached, LightGlue proficts an assignment between points based on their point wire similarity and usury manifoldity.

Pose estimation

- Using the 5-point algorithm to estimate the essential matrix
- Find an outlier-free set with RANSAC
- Extract the pose from the essential matrix

$$x'^{\top}Ex = 0$$
$$det(E) = 0$$
$$2EE^{\top}E - tr(EE^{\top})E = 0$$

Pose estimation

- Using the 5-point algorithm to estimate the essential matrix
- Find an outlier-free set with RANSAC
- Extract the pose from the essential matrix

$$E = t_{\times}R$$
 where $t_{\times} = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix}$

Pipeline summary

- Shadow rays encoding
- Sparse ResNet CNNs
- LightGlue matcher
- Pose with 5-points algorithm and RANSAC

- Very few missions have flown and maintained a stable orbit around an asteroid
- Real dataset would not be representative of the space of possible asteroids
- Synthesis is necessary

Mission	Year	Camera resolution
OSIRIS-Rex	2016	1024x1024
Hayabusa2	2014	1024x1024
Rosetta	2004	1024x1024
Hayabusa	2003	1024x1000
NEAR Shoemaker	1996	537x244

Table 1: Asteroid hovering missions

- Four datasets: train, validate, test, benchmark
- Train, validate, test are generated procedurally from noise
- Benchmark is an "enhanced model" of the Apophis asteroid

Custom size

- Custom size
- Custom deformation

- Custom size
- Custom deformation
- Custom crater size/distribution

- Custom size
- Custom deformation
- Custom crater size/distribution
- Custom roughness

- Custom size
- Custom deformation
- Custom crater size/distribution
- Custom roughness
- Custom depth

- Custom size
- Custom deformation
- Custom crater size/distribution
- Custom roughness
- Custom depth
- Custom boulder size/count

Parameter	Value
Number of rocks	1
Roughness	U(2, 10)
Detail	4
Scale factor	$U^{3}(1,3)$
Deform	U(1, 10)
Depth	U(0.1, 0.5)
Large rock count	U(1, 10)
Medium rock count	U(10, 100)
Small rock count	U(100, 1000)
Large rock size	U(0.01, 0.03)
Medium rock size	U(0.003, 0.01)
Small rock size	U(0.001, 0.003)

Table 5: Parameter summary for shape model generation

Qualitative comparison: SIFT

Qualitative comparison: Superpoint

Qualitative comparison: COFFEE

Quantitative results: Definitions

• Predicted match matrix M:

$$M_{ij} = \begin{cases} 1 & \text{if } f_i^A \text{ is predicted to match } f_j^B \\ 0 & \text{otherwise} \end{cases}$$

• Ground-truth match matrix G:

$$G_{ij} = \begin{cases} 1 & \text{if } ||P_A^B(c_i^A) - c_j^B||_2 < 1\\ 0 & \text{otherwise} \end{cases}$$

• N.B. If $0 < i < N_A$ and $0 < j < N_B$, then M is of shape (N_A, N_B) but only contains $min(N_A, N_B)$ positive elements

Quantitative results: Definitions

• Precision:
$$P = \frac{\sum_{i,j} G_{ij} M_{ij}}{\sum_{i,j} M_{ij}}$$

• Recall:
$$R = rac{\sum_{i,j} G_{ij} M_{ij}}{\sum_{i,j} G_{ij}}$$

• F₁-score:
$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

Quantitative results

Algorithm	Precision (K=100)	Precision (K=200)	Precision (K=500)
COFFEE (ours)	82.5%	77.5%	68.1%
Superpoint	69.4%	52.9%	30.4%
ContextDesc	47.1%	45.1%	37.3%
Disk	67.5%	57.4%	41.3%
LFNet	16.2%	14.1%	10.7%
R2D2	16.9%	15.0%	10.9%
SIFT	17.4%	14.8%	10.8%
ORB	5.2%	4.3%	3.1%
AKAZE	9.4%	8.0%	5.1%

Table 8: Precision for a given number of features (best in bold)

Quantitative results

Algorithm	Error [rad]	Standard deviation [rad]
COFFEE (ours)	0.028	0.021
Superpoint	0.061	0.042
ContextDesc	0.061	0.049
Disk	0.15	0.14
LFNet	0.11	0.12
R2D2	0.064	0.061
SIFT	0.095	0.077
ORB	0.61	0.69
AKAZE	0.50	0.56

Table 15: Pose estimation bias and std dev. for the best K=500 features (best in bold)

Quantitative results

Figure 23: Trade-off between runtime and accuracy

Conclusion

- COFFEE is a data-driven feature detector/descriptor extracting information from the shadow boundaries
- The full pipeline was benchmarked against other state-of-the-art algorithms through renderings of Apophis
- 3.5x faster than the fastest deep-learning algorithm
- 3.5x more accurate than the most accurate classical algorithm

Why not SIFT?

Why not Superpoint?

Why not COFFEE?

Why not COFFEE?

