

Power System
Reference

V4.0 R06

Revision history

Author Version Revision Date Changes summary

Arion Zimmermann PS V1.0 R01 12/2020 Initial documentation
uploaded

Arion Zimmermann PS V2.0 (Pollux I) R02 06/2021 Rewritten
documentation

Arion Zimmermann PS V2.1 R03 08/2021 Updated
documentation

Arion Zimmermann PS V3.0 (Pollux II) R04 08/2022 Rewritten
documentation

Arion Zimmermann PS V4.0 (Pollux III) R05 08/2023 Rewritten
documentation

Arion Zimmermann PS V4.0 R06 10/2023 Updated
documentation

Table of contents

TABLE OF CONTENTS ... 2

1. SYSTEM REQUIREMENTS ... 7

1.1. Nominal requirements .. 7

1.2. Extended requirements ... 8

1.2.1. General requirements .. 8
1.2.2. Power delivery requirements ... 8
1.2.3. Monitoring requirements ... 9
1.2.4. Safety requirements ... 9
1.2.5. Interface requirements ... 9

2. GENERAL ARCHITECTURE .. 10

3. HARDWARE .. 10

3.1. Pollux III .. 10

3.1.1. Top-level ... 10
3.1.2. Power Interface .. 12
3.1.3. Castor Interface .. 14
3.1.4. Main controller ... 17
3.1.5. Analog Front End .. 20
3.1.6. Auxiliary Power Supplies ... 22
3.1.7. User Interface ... 23
3.1.8. Layout ... 25

3.2. Power module design .. 33

3.2.1. Topologies .. 33

3.2.2. Efficiency .. 34

3.2.3. Stability .. 35

3.2.4. Thermal management ... 36

3.3. Power modules common design .. 37

3.3.1. Interface ... 37
3.3.2. Architecture .. 38
3.3.3. Control signals .. 39

3.4. Low-voltage power module ... 41

3.5. High-voltage power module .. 44

3.6. Castor II ... 48

3.6.1. Sensor bus interface definition ... 49
3.6.2. System bus interface .. 49

3.6.3. General purpose bus interface ... 49
3.6.4. Status bus interface .. 50
3.6.5. Power interface .. 50
3.6.6. Wireless module ... 50
3.6.7. Programming interface ... 51
3.6.8. Layout ... 53

4. SOFTWARE ... 56

4.1. Pollux III software .. 56

4.1.1. Hardware configuration .. 57
4.1.2. Thread management .. 60
4.1.3. Communication .. 64
4.1.3.1. RoCo protocol ... 65

Abstract ... 65

MessageBus API .. 65

Packet definition .. 65
Define .. 66
Send ... 66
Receive ... 66
Forward ... 66

Writing an implementation of MessageBus ... 67

IOBus: A buffered implementation of MessageBus .. 67

NetworkBus: A TCP/IP implementation of MessageBus ... 67

Protocol ... 68

Building ... 70

Examples ... 70

1. Client to client communication through a server. ... 70
4.1.3.2. Inter-thread communication .. 71
4.1.3.3. Castor interface .. 71
4.1.3.4. Avionics interface ... 71
4.1.4. Supply management ... 71
4.1.5. Power monitoring ... 71
4.1.6. GUI .. 71
4.1.7. Logging .. 71

4.1.7.1. Flash memory driver ... 71

4.1.7.1.1. Hardware definitions ... 71

4.1.7.1.2. QSPI wrapper .. 72

4.1.7.1.3. I/O driver .. 72

1.1.1 Concept ... 73
1.1.2 Usage .. 76

1.1.3 Architecture .. 81
1.1.4 Implementation .. 82

4.1.7.2. RocketFS ... 87

4.1.8. Watchdog ... 88

4.2. Castor II software .. 89

4.2.1. Website ... 91
4.2.2. Thread management .. 93
4.2.3. Event dispatcher ... 94
4.2.4. Data management .. 96
4.2.5. API ... 104

4.3. Additional software ... 109

4.3.1. API access ... 109
4.3.2. Power report generator .. 109

5. OPERATIONS ... 110

5.1. Tools and parts .. 110

5.2. Definitions ... 111

5.3. Operations procedure ... 113

5.3.1. Main procedure .. 113
5.3.2. Battery integrity check .. 114
5.3.3. Charging the battery ... 115
5.3.4. Checking safety system integrity .. 115
5.3.5. Safety system quick test ... 116
5.3.6. Checking power supply integrity .. 116
5.3.7. Starting power system .. 117
5.3.8. Stopping power system .. 117
5.3.9. Power supply quick test .. 117
5.3.10. Installing supervisor .. 117
5.3.11. Connecting to supervisor .. 118
5.3.12. Supervisor quick test .. 118
5.3.13. CTA/CTB quick test ... 118
5.3.14. Installing power module ... 118
5.3.15. Power modules quick test .. 119
5.3.16. Connecting subsystems .. 119
5.3.17. Monitoring the power supply ... 119
5.3.18. Fetching mission data ... 120
5.3.19. Generating mission report .. 120

5.4. Hardware integration procedure ... 122

5.4.1. Main procedure .. 122
5.4.2. Integrating battery .. 122
5.4.3. Integrating safety systems .. 122
5.4.4. Integrating power supply .. 122

5.5. Software integration procedure ... 123

5.5.1. Main procedure .. 123
5.5.2. Updating BMS firmware ... 123
5.5.3. Integrating supervisor software ... 123
5.5.4. Integrating CTA/CTB software .. 123
5.5.5. Installing XploreGrapher software .. 123

1. System requirements

The power system is a standalone subsystem in EPFL Xplore’s rovers. It is the subsystem
which possess by far the least number of interfaces with the rest of the rover. Nevertheless,
these few interfaces are critical to the proper functioning of the rover and a single failure of
these interfaces can lead to a mission failure.

When defining the power system, the System’s Engineering workflow could be decomposed
in the following manner:

1) Define the Concept of Operations (ConOps).
2) For each subsystem, define modes of activity and assign them to the ConOps phases.
3) Assess the power needs for each subsystem for each mode of activity. Make sure to

minimize the number of different voltages when assessing the subsystem’s needs
(trade-offs must be made!).

4) Compute the power and energy budget.
5) Write testable requirements accordingly.
6) Deliver the requirements to the power system designers.
7) Write test procedures to validate the requirements.
8) Deliver the test procedures to the power system testers and ensure that all

requirements are fulfilled. Make trade-offs if needed.
9) Integrate electronically the power system as soon as possible with the other

subsystems. This makes sure that the system requirements represent well the
power/stability needs of the subsystems.

10) Benchmark the system by measuring its efficiency and temperature increase across
many input/output voltages and load conditions.

11) Integrate structurally the power system.

1.1. Nominal requirements

The design of the power system is derived from a set of requirements defined by the
systems engineering authority. These are system constraints necessary for the proper
functioning of the Kerby 2023 rover. Table @ lists the requirements proposed by the
systems engineering team.

ID Title Description

XP_EL_001 5V rail The 5V channel shall be able to provide up to 3.5 [A].
XP_EL_002 12V rail The 12V channel shall be able to provide up to 3.5 [A].
XP_EL_003 15V rail The 15V channel shall be able to provide up to 3.5 [A].
XP_EL_004 24V rail The 24V channel shall be able to provide up to 3.5 [A].

These high-level requirements set a lower-bound performance on the power system and
define the smallest set of necessary functionalities. Nevertheless, in the prospect of reusing
the same power supply design for future projects in robotics, an extended set of
requirements was defined by the power system design authority. The extended

requirements, listed in the following tables, enforce the design of a modular, scalable, and
redundant power system.

1.2. Extended requirements

1.2.1. System requirements

ID Title Description

XP_PWR_GEN_001 Power system
definition

The power system consists of identical power
supplies.

XP_PWR_GEN_002
Power system
configuration

definition

The power system configuration N defines the
number of usable power supplies in the power
system.

 Input voltage rail An input voltage rail between 20V and 30V is
provided to the power system.

XP_PWR_GEN_003 Output voltage
rails

The power system shall provide at least 4
independent output voltage rails.

XP_PWR_GEN_004 Power interface
definition

A power interface is a set of two power terminals
providing the positive and negative polarities of a
given voltage rail to other subsystems.

XP_PWR_PD_005 Input power
interface

The power system shall expose at least two input
power interfaces.

XP_PWR_PD_007 Output power
interface

The power system shall expose at least two output
power interfaces per voltage rail.

XP_PWR_GEN_005 Power capability
The power capability for each power interface shall
be proportional to the number of power supplies for
N≤4.

1.2.2. Power supply requirements

ID Title Description

XP_PWR_GEN_006 Mechanical Each power supply shall fit in a 130x130x85
bounding box.

XP_PWR_GEN_007 Thermal Each power supply shall dissipate less than 30W in
thermal power.

XP_PWR_PD_002 High-voltage rail
The power system shall supply any voltage between
0V and 60V for at least two voltage rails, called HVA
and HVB.

XP_PWR_PD_003 Low-voltage rail
The power system shall supply any voltage between
0V and 20V for at least two voltage rails, called LVA
and LVB.

XP_PWR_PD_09 Redundancy
All XP_PWR requirements except XP_PWR_006 and
XP_PWR_008 shall be fulfilled even if N-1 among N
power supplies fail.

XP_PWR_PD_010 Scalability
All N power supplies shall share their load current to
have less than 1A difference in current provision on
each power supply for each voltage rail.

XP_PWR_PD_011 Robustness A power supply’s MTBF shall be at least 72h.

XP_PWR_PD_012 Power supply
current capability

For each power supply, each voltage rail shall
provide at least up to 10A of continuous current.

XP_PWR_PD_013 Stability margin
For each power supply, each voltage rail shall have a
control system phase margin of at least 60° by
design.

XP_PWR_PD_014 Bandwidth
For each power supply, each voltage rail shall have a
control system bandwidth of at least 10kHz by
design.

XP_PWR_PD_015 Fast transient
response

For each power supply, each voltage rail shall have a
transient response to a current slew rate of 10A/us
bounded to 20% of the nominal voltage between
0ms and 1ms after the transient.

XP_PWR_PD_016 Slow transient
response

For each power supply, each voltage rail shall have a
transient response to a current slew rate of 10A/us
bounded to 5% of the nominal voltage between 1ms
and 10ms after the transient.

XP_PWR_PD_017 AC stability
For each power supply, each voltage rail shall have
an RMS AC component smaller than 2% of the
nominal voltage.

1.2.3. Monitoring requirements

ID Title Description

XP_PWR_MON_001 Voltage rails The power system shall supply at least 4
independent voltage rails.

XP_PWR_MON_002 High-voltage rail
The power system shall supply any voltage
between 0V and 48V for at least two voltage rails,
called HVA and HVB.

XP_PWR_MON_003 Low-voltage rail
The power system shall supply any voltage
between 0V and the system’s input voltage for at
least two voltage rails, called LVA and LVB.

1.2.4. Safety requirements

ID Title Description

XP_PWR_SAF_001 Voltage rails The power system shall supply at least 4
independent voltage rails.

XP_PWR_SAF_002 High-voltage rail
The power system shall supply any voltage
between 0V and 48V for at least two voltage rails,
called HVA and HVB.

XP_PWR_SAF_003 Low-voltage rail
The power system shall supply any voltage
between 0V and the system’s input voltage for at
least two voltage rails, called LVA and LVB.

1.2.5. Interface requirements

ID Title Description

XP_PWR_IF_001 Wireless interface The power system shall provide a wireless interface
compliant with the TBD interface specification.

XP_PWR_IF_002 CAN interface The power system shall provide a CAN bus interface
compliant with the TBD interface specification.

XP_PWR_IF_003 Interactive user
interface

The power system shall provide an interactive
interface compliant with the TBD interface
specification.

2. General architecture

3. Hardware
3.1. Pollux III
Pollux III is the power system’s motherboard. It provides a current path between the
power modules and the power interfaces, while actively monitoring the current and
voltages on the lines. The mission data gathered by the monitors is stored in a persistent
storage and transmitted to Castor, to a CAN bus and to a touchscreen.

3.1.1. Top-level
Pollux III’s top-level schematic is depicted in @. It represents the block diagram and high-
level connections between the different components that compose Pollux.

Pollux is a motherboard which accepts up to four power modules. The latter are the ones
responsible for converting the battery’s voltage to the required voltages. Four of them
are defined:

- LVA: Low-voltage power module channel A.
- LVB: Low-voltage power module channel B.
- HVA: High-voltage power module channel A.
- HVB: High-voltage power module channel B.

In addition to this, two additional power interfaces are defined:

- Input bus: The power input coming from the safety circuitry.
- Follower bus: The power output that has the same voltage as the power input.

XT-60 power connectors are used for the input and follower busses, as they are designed
to carry more current. As a safety measure, a high-power Zener diode is placed in parallel
to these power buses, to prevent damage that would be caused by a reverse-polarity or
over-voltage condition.
DC barrel jack rated for 10A continuous current are used for the four voltage rail outputs.
Six measuring devices, called the Analog Front Ends, are used to measure the voltage and
current at the power interfaces. These measuring devices all have a digital
communication bus connected to the main control unit.
Moreover, analog inputs to Pollux’ main control unit are used to sense the battery
voltage rail and the 3.3V voltage rail. A high-precision temperature-stabilized resistor
divider, shown in schematic @, is used to measure the output voltage relatively
accurately.

Finally, digital interfaces, such as the Castor interface, the CAN bus interface and the
Interactive User Interface, are also connected to the main control unit.

3.1.2. Power Interface
Schematic @ shows the pin specification of the power interface between the power
modules and the Pollux motherboard. The mechanical stiffness of the power connector
assembly after mating was the major weakness of Pollux II. Instead, a Molex EXTreme
Ten60Power heavy-duty connector is employed in Pollux III, significantly reducing the
stiffness issue of Pollux II.

A 20A fuse on the input side of the power module prevents damage to the power system if
one of the power modules fails in short-circuit.
Table @ lists and describes the pin interfaces of the power modules.

Pin Corresponding function

P1 (max. 60A) Channel B voltage output

P2 (max. 60A) Power ground

P3 (max. 60A) Fuse-protected input from 20V to 30V

P4 (max. 60A) Channel A voltage output

S17 3.3V input voltage reference

S18 I2C data line SDA to control the output voltages

S19 I2C clock line SCL to control the output voltages

S20 Digital ground reference

S21 Channel A Enable Pin (active-high, pulled-up)

S22 Channel B Enable Pin (active-high, pulled-up)

S23 Channel A Shutdown Pin (active-high, pulled-down)

S24 Channel A Shutdown Pin (active-high, pulled-down)

3.1.3. Castor Interface

A physical separation exists between the power system’s motherboard and the wireless
control module. Those two boards are interconnected through a 40-pins connector that
allows signals to be transmitted from one board to another. The pin assignment for this
connector is very generic to allow forward-compatibility and is described in Appendix A.
This bus consists of several subinterfaces: a sensor bus, a system bus, a general purpose
bus and a status bus.

Schematic @ corresponds to this interface and is shown below for a better
understanding.

3.1.3.1. Sensor bus interface definition

The link between the wireless control board and the motherboard is implemented
through the UART protocol. Up to two UART ports can be used for transmission. This
dual port feature was used with Pollux II but is deprecated in Pollux III, where only the
UART port 1 is significant.

Pin Corresponding function

Sensor bus signal 0 (SBUS0) Transmit on UART TX port 1

Sensor bus signal 1 (SBUS1) Receive on UART RX port 1

Sensor bus signal 2 (SBUS2) Unused (legacy)

Sensor bus signal 3 (SBUS3) Unused (legacy)

Sensor bus signal 4 (SBUS4) Serial Audio Interface Frame Sync

Sensor bus signal 5 (SBUS5) Serial Audio Interface Clock

Sensor bus signal 6 (SBUS6) Serial Audio Interface Data

3.1.3.2. System bus interface

This interface is used to connect the power supply to the rest of the Rover. In particular,
it consists of an UART link to connect to the Rover’s BMS (battery management system)
and an I2C connection to the power system’s sensors. Once again, the pin assignments
are stated below.

Pin Corresponding function

System bus signal 0 (SYSIO0) UART RX

System bus signal 1 (SYSIO1) UART TX

System bus signal 2 (SYSIO2) I2C SDA

System bus signal 3 (SYSIO3) I2C SCL

In Pollux III, the connection to the BMS is not implemented.

3.1.3.3. General purpose bus interface
Five general purpose lines also connect the control module to the power module. Those
are mainly used for debugging purposes. No special protocol is defined for those
general-purpose signals. A 1.25mm Molex PicoBlade header is used to interface the
SYSIO0 and SYSIO1 to the BMS.

3.1.3.4. Status bus interface

To indicate the state of the control module, three signals connect the control module to
the power module. These lines shall carry PWM signals whose duty cycle completely
defines the state of the control module.

The PWM signals are used to drive a NMOS MOSFET as in schematics @. When the
control pin (CTRL) is floating (Castor reset or disconnected) the MOSFET conducts and
the RGB LED shines white.

When the control signal is a PWM, the MOSFET drain’s voltage follows it and the LED
shines accordingly. The duty cycle of the three PWM signals change the intensity of the
three RGB color channels.

3.1.3.5. Power interface

A 3.3V bi-directional power port connects Castor to Pollux. One the one hand, if Castor
is powered by USB, Pollux also receives a 3.3V input supply. On the other hand, if Pollux
is powered by the battery, Castor receives a 3.3V input. The current specification for the
power port is 2A maximum.

3.1.4. Main controller
The control unit’s schematic @ describes how the main controller is interfaced with the
multiple sensors, power modules, and external interfaces.

A SPI communication bus allows the main controller to communicate with the analog front
ends, which measure the voltage and current through all power interfaces.
In the SPI protocol, a controller can only communicate to one sensor at a time. The active
sensor is selected through an active-low chip select (nCS). With this regard, an 8-bits active-
low multiplexer CD74HC137 is used to convert a 3-bits address, which defines the sensor
being selected, to an 8-bits signal, which drives the nCS pins of the analog front ends.

Table @ lists the maps the address values to the selected sensor.

Address Chip-select port Selected analog front end
000 11111110 Low-voltage channel A (LVA) bus
001 11111101 Low-voltage channel B (LVB) bus
010 11111011 High-voltage channel A (HVA) bus
011 11110111 High-voltage channel B (HVB) bus
100 11101111 Follower bus
101 11011111 Input bus
110 10111111 None
111 01111111 None

The harness MOD_CTRL_Harness encompasses all the necessary signals to fully control the
state of a power supply. An I2C bus allows the main control unit to communicate with the
supply to change its output voltages. By design, the power modules I2C addresses should be

unique, so that the main controller can address and communicate with them separately,
even though they are all connected to the same I2C bus. Two 2kΩ pull-up resistors are
added to the SDA and SCL lines as per the I2C bus specification. A low resistor value ensures
that the Fast-Mode I2C communication can be performed, at the cost of a higher power
dissipation. Additionally, four digital lines control the state of the supplies and are
connected separately to the main controller.
The controller itself in defined in schematic @. It uses an STM32H750VBT6 microcontroller
from STMicroelectronics as the main controller. In the schematic, the STM32H750
microcontroller is divided into three parts for better readability.

A 30MHz crystal oscillator from NDK is used as the microcontroller’s High-Speed External
Oscillator (HSE-OSC). This oscillator presents a load capacitance of 8pF. To compute the
value of the C7 and C11 capacitors, the estimated stray capacitance of the link between the
oscillator and the STM32 microcontroller must be taken into account. After a preliminary
layout of the PCB, an estimated stray capacitance of 5.2pF is present on the line. According
to the application note AN2867 from STMicroelectronics, section 3.2, this leads to C7 and
C11 capacitor values of 5.6pF each.
The programming interface of the STM32 is exposed as a JTAG connector from Samtec, a
reset button and an active-high boot mode selection button. Moreover, a 100nF anti-
bounce capacitor C14 is added on the reset signal line.
Note that the bypass ceramic capacitors are placed according to the microcontroller’s
datasheet.
In addition to this, three peripherals are connected to the microcontroller:

- One 512Mb flash memory to store persistent mission data (Schematic @).

- One CAN controller to communicate with other subsystems in the rover (Schematic
@).

- One IMU to compute the attitude of the rover before launching the Brokkoly drone
(Schematic @).

-

3.1.5. Analog Front End

The power system specifications require an accurate measurement of output voltage,
output current and power consumption for every power interface. To satisfy those
requirements, it is necessary to make several design choices.

First of all, a high-side current sensing method is used instead of a low-side sensing. This
has the advantage of rejecting the disturbances that could occur on the ground plane, as
well as giving the operator the ability to detect load short-circuits [RF10].

Moreover, there are two ways of measuring DC currents: Hall sensing and shunt resistor
sensing. Hall sensing measures the magnetic field generated by a wire according to
Ampere’s law, whereas shunt sensing measures the voltage across a small-value
resistor. Although Hall sensing is non-intrusive and does not affect the efficiency of the
converter, it is more complex to implement and takes more space on the PCB. A shunt
resistor sensing method is therefore preferred. Since up to 40A can be expected on the
input and follower power ports, a high-quality current sense resistor of 1mΩ is used for
an expected power dissipation of 1.6W (below the 2W rating of the resistor). The
temperature stability of this resistor is reduced to 50PPM/°C, so that its impact on the
current measurements is minimized.

After that, an INA239 power monitor from Texas Instruments communicating through SPI
is used to measure the current and voltage through the current sense resistor.

The INA239 IC was specifically chosen because it rejects the common-mode component
of the differential signal up to 80V. This is particularly useful since the power modules
can deliver a voltage up to 60V according to their specification.

The analog front end system is represented in schematic @.

3.1.6. Auxiliary Power Supplies

Two auxiliary power supplies are used to deliver a 3.3V rail and a 5V rail to power the
multiple ICs present on Pollux. A fully integrated commercial solution was used from
RECOM power, to minimize their risk of failure. Two RECOM RPMB power supplies are
used, one RPMB3.3-3.0 (3.3V, max. 3A) and one RPMB5.0-2.0 (5V, max. 2A). Two LEDs
with a series resistor indicate the state of the power supplies. If the power supplies are
“Power Good” by activating the PGOOD signal, the LEDs shine green.

RECOM power supplies were chosen because they are fully integrated and can provide a
high output current. The ease of use and simplicity of the datasheet were also considered
in the selection. Even though these power supplies are soldered from below,
manufacturing mistakes are almost impossible in the soldering process.

Bypass stabilizing capacitors are added on the input and output lines, according to the
datasheet.

A bypass input ceramic capacitor is placed at the VIN_1 and VIN_2 pads to ensure that
the supply remains regulating at the right output voltage even when voltage drops occur
on the input line. Another ceramic capacitor is placed on the output 3V3 line to ensure
that the power supply remains stable over all current ranges between 0A and 3A.

 @ LED

3.1.7. User Interface

An interactive user interface is implemented in Pollux III. It makes use of one touchscreen
and one sound system to give the end-user a direct control and feedback of the power
system.

The chosen integrated commercial solution is a GEN4-FT813-43CPT-CLB and combines a
touchscreen and an FT813 graphical processor. The processor is controlled by the main
controller through a DISP_Harness, which mainly incorporates an SPI communication bus.
The integrated solution proposed by GEN4 was selected because it incorporates a well-
documented FT813 IC, a high-current backlighting system to ensure that the screen is
visible in full daylight and a high-resolution capacitive touchscreen.

The FT813 controller also has the ability to control a sound system through a PWM audio
signal. Schematic @ depicts the interactive user interface implementation.

A 50% voltage divider is applied to the Audio power-down pin, as per the datasheet
specification.

The touchscreen embedded in the commercial solution is a 4.3’’ capacitive touchscreen
with bezels. It fits exactly the form-factor of the final Pollux PCB.

In schematic @, the sound system is abstracted by the Audio block which is detailed in
further details in schematic @.

The sound system schematic in fully inspired by the advised design in the GEN4-FT813
datasheet. It makes use of a pre-amplifier, a simple 60dB 33kHz RC low-pass filter and
a push-pull differential amplifier. The output audio signal is exposed on Pollux by a
Molex MicroFit connector.

3.1.8. Layout

The Pollux III final PCB is drawn in layout @. It consists of four layers, two (top and
bottom) for placing the components and high-current power paths, one groundish layer
and one powerish layer. The suffix -ish is added to the name of the layers to denote that
they are sometimes used for other purposes than the one implied by the layer name.

The difficuty in designing the Pollux III motherboard resides in having to carry large
amounts of current through the PCB, without impacting the control and measurement
systems. This is particularly challenging when dealing with very compact PCBs.

The very first design consideration here is to fulfil the system requirement:

XP_PWR_GEN_001: The power system consists of up to N power supplies.

In other words, the systems engineering requires the power system to be fully scalable.
The easiest solution for this is to design Pollux III so that it is mechanically stackable with
other motherboards. Diagram @ shows how a 4-power supplies configuration could look
like.

Special solder pads on the top and on the bottom layer can be used to connect two Pollux
III motherboards with one another. These solder pads are also compatible with the barrel
jack footprints, allowing the two extremities of the power system to interface with the
subsystems.

Throughout the design, a sense of central symmetry was preponderant, so that each Pollux
III motherboard could be completely rotated around its center and still be interfaceable
with other motherboards. Only the logical names LVA and LVB would have to be swapped
to HVA and HVB respectively. Note that the connector order LVB – LVA – Input/Bypass –
HVA – HVB is also a direct consequence of this central symmetry.

Once this motherboard stacking architecture is adopted, it was necessary to design the
high-current power path between the Input/Bypass ports to the subsystems. Diagram @
depicts how the input power is passed to the bypass output bus after being tapped by a
high-power via zone consiting of 16 vias, each capable of carrying up to 3.5A.

This via tap sources the powerish layer. At this point the powerish layer has a voltage
roughly equal to the (battery) input voltage. Four other via taps bring this voltage to the
extremities of the PCB, as shown in diagram @.

Large tracks are finally used to bring the input voltage to the power modules on the top
layer as in diagram @.

The power modules convert the input voltage to voltages required by the subsystems and
feeds them back to the power busses through large tracks in the bottom layer (diagram
@).

Large tracks finally connect the subsystems grounds together to the battery voltage in
diagram @.

One might be tempted to think that the ground current of the subsystem is exactly equal
to the battery ground current and that all currents get cancelled out in the so-called
ground bus of diagram @. However, this intuition is incorrect because the voltage levels at
the subsystem outputs differ from the input voltage level.

Figure @ shows how the different currents must be summed up (red are voltage levels and
black are grounds; I is the current output from the battery and H is the voltage transfer
function of the power module). Indeed, the total ground current from the power modules
is I – I/H. Contrary to intuition, this ground current can become very large, especially when
buck converters are used to convert the input voltage to a low voltage, such as 5V (H=0.2).

This consideration highlights the importance of using a via tap to the groundish layer,
where a ground current can be brought to the power modules. To minimize the ground

noise due to this, a 0.5mm barrier isolates the control/measurement ground from the
power ground. A single 5mm connection connects the power ground to the
control/measurement ground.

The next step after deciding which is the power path is to place the different components
on the top and bottom layers. For simplicity, most components were installed on the top
layer since it greatly simplifies the soldering of the PCB. Only shunt resistors were placed
on the bottom layer, to measure the power consumption on each voltage rails.

3.2. Power module design
3.2.1. Topologies

3.2.2. Efficiency

3.2.3. Stability

3.2.4. Thermal management

3.3. Power modules common design

The power modules compatible with Pollux III make use of a common power interface, as
described in section 3.1.3.5.

3.3.1. Interface

Table @ (repeated from table @) lists and describes the pin interfaces of the power
modules.

Pin Corresponding function

P1 (max. 60A) Channel B voltage output

P2 (max. 60A) Power ground

P3 (max. 60A) Fuse-protected input from 20V to 30V

P4 (max. 60A) Channel A voltage output

S17 3.3V input voltage reference

S18 I2C data line SDA to control the output voltages

S19 I2C clock line SCL to control the output voltages

S20 Digital ground reference

S21 Channel A Enable Pin (active-high, pulled-up)

S22 Channel B Enable Pin (active-high, pulled-up)

S23 Channel A Shutdown Pin (active-high, pulled-down)

S24 Channel A Shutdown Pin (active-high, pulled-down)

A single voltage rail input ranging from 20V to 30V is provided to the power module. The
power module can provide up to two output voltage rails to Pollux. For the sake of
clarity, these channels are called A et B. For each of these channels, two signals control
the activity of the supplies:

- Enable signal: Nominal start/stop signal that controls the state of the DC/DC
converters.

- Shutdown signal: Emergency stop signal that electronically disconnect the load
from the supply.

3.3.2. Architecture

One might find tempting to simply connect a DC/DC converter between the input and
output pins of the power interface. However, an additional complexity arises once the
requirements for scalability and redundancy are considered.

Indeed, when thinking system-wise, multiple Pollux III motherboards will be stacked next
to each other, effectively connecting the outputs of multiple power modules together.

With a naïve architecture, if only one supply fails in short-circuit, all boards are
automatically also short-circuited, which at best result in a very high current dissipation
and heat generation in the boards and at worst, creates a chain reaction which destroys
the power modules one by one.

 To understand the situation,

3.3.3. Control signals

To power the internal systems in the power module, a 3.3V CP1799T LDO is used. It is
sourced from the input voltage, which can range from 21V to 29V and provides a stable
3.3V output to the digital isolators and the DAC.

3.4. Low-voltage power module

3.5. High-voltage power module

3.6. Castor II

A physical separation exists between the power system’s motherboard and the wireless
control module. Those two boards are interconnected through a 40-pins connector that
allows signals to be transmitted from one board to another. The pin assignment for this
connector is very generic to allow forward-compatibility and is described in Appendix A.
This bus consists of several subinterfaces: a sensor bus, a system bus, a general purpose
bus and a status bus.

Schematic @ corresponds to this interface and is shown below for a better understanding.

Eventually, the interface must be connected to a real hardware implementation of the
WiFi module. Schematics @ gives hardware functions to the interface pins. Some
additional safety is added before interfacing with Pollux, such as a Zener diode, which
clamps voltage transients to a 3.3V maximum voltage. Two 27Ω resistors are added to the
BMS UART connection to prevent damage in case of a reverted connection with the BMS.

3.6.1. Sensor bus interface definition

The link between the wireless control board and the motherboard is implemented
through the UART protocol. Up to two UART ports can be used for transmission. This dual
port feature was used with Pollux II but is deprecated in Pollux III, where only the UART
port 1 is significant.

Pin Corresponding function

Sensor bus signal 0 (SBUS0) Receive on UART RX port 1

Sensor bus signal 1 (SBUS1) Transmit on UART TX port 1

Sensor bus signal 2 (SBUS2) Receive on UART RX port 2

Sensor bus signal 3 (SBUS3) Transmit on UART TX port 2

Sensor bus signal 4 (SBUS4) Unused (legacy)

Sensor bus signal 5 (SBUS5) Unused (legacy)

Sensor bus signal 6 (SBUS6) Unused (legacy)

3.6.2. System bus interface

This interface is used to connect the power supply to the rest of the Rover. In particular,
it consists of an UART link to connect to the Rover’s BMS (battery management system)
and an I2C connection to the power system’s sensors. Once again, the pin assignments
are stated below.

Pin Corresponding function

System bus signal 0 (SYSIO0) UART RX

System bus signal 1 (SYSIO1) UART TX

System bus signal 2 (SYSIO2) I2C SDA

System bus signal 3 (SYSIO3) I2C SCL

3.6.3. General purpose bus interface

Five general purpose lines also connect the control module to the power module. Those
are mainly used for debugging purposes. No special protocol is defined for those general
purpose signals.

3.6.4. Status bus interface

To indicate the state of the control module, three signals connect the control module to
the power module. These lines shall carry PWM signals whose duty cycle completely
defines the state of the control module.

3.6.5. Power interface

A 3.3V bi-directional power port connects Castor to Pollux. One the one hand, if Castor is
powered by USB, Pollux also receives a 3.3V input supply. On the other hand, if Pollux is
powered by the battery, Castor receives a 3.3V input. The current specification for the
power port is 2A maximum.

3.6.6. Wireless module
An ESP32-WROOM-32UE 2.4 GHz WiFi-enabled module from Espressif Systems is used to
interface with Pollux and allow Castor to communicate with the end-user.
A 100nF bypass capacitor is placed on the power input line, as recommended by the
datasheet and a reset button with a 1kHz low-pass filter allows the end-user to send an
active-low reset signal to the ESP32.
Additionally, the ESP32’s bootloader settings can be changed by using the active-low
boot button.
Two programmable LEDs (green and red) are also present to indicate Castor’s state. Note
that the lines IN0, IN1, IN2 and IN3 are input only lines, whereas IN4 is an I/O line.
Schematic @ represents the conceptual connections between the ESP32, the LEDs and
the buttons.

3.6.7. Programming interface

To program the ESP32, an FT231XS USB-to-UART bridge is embedded in Castor. This IC
translates the USB2 differential signals D+ and D- into the UART RX and TX signals.
Schematics @ shows how this part of the system was implemented. Note that, in
general, a FT231 driver must be installed on the target operating system to communicate
with Castor.

A standard Micro USB type B connector is used to connect the Castor board with a host
computer.

Several TVS diodes are connected in parallel to the connector’s signal lines, to prevent
unintentional electrostatic discharges when touching the connector or plugging it into
the host computer. These TVS diodes can be considered as back-to-back high-energy
Zener diodes that will conduct once the voltage on any line exceeds 3.3V, preventing
damage to sensitive components on the board.

In addition to this, 125MHz RC low-pass filters are added on the signal lines D+ and D-, so
reject high-frequency noise as much as possible before feeding the signals into the
FT231XS IC. This low-pass filter is recommended in the FT231-XS datasheet.

The host computer’s 5V/1A USB power output is used to power-up the ESP32 and the
USB-to-UART bridge without the need of Pollux’ power. Nevertheless, the 5V power line
must be converted to a stable 3.3V line. This feature is implemented by the MCP1827
LDO. When connected to Pollux, this LDO can also provide current to the whole power
system.

33µF Tantalum-Polymer capacitors are added on the input and output side of the LDO to
stabilize it and compensate possible voltage transients on the lines. Tantalum-Polymer
capacitors are used here for they have a high capacity to volume ratio, which is critical for
the compactness of Castor. In general, Tantalum-Polymer capacitors exhibit a low
equivalent series resistance (ESR), which is a good marker to optimize the efficiency of a

switching system. In the case of LDOs however, it might negatively avert the stability of
the voltage regulator. Care must be taken to ensure that the output capacitance’s ESR is
higher than the one required in the MCP1827 datasheet. @

The FT231XS IC is used in a self-powered configuration (see section 6.2 on its datasheet).
Bypass capacitors are added around the FT231 chip, as recommended by the datasheet.

3.6.8. Layout

Layout @ shows how the schematics were physically implemented into a very compact,
2-layers and easy to manufacture PCB.

All components with may require an interface with the rest of the system were placed on
the upper side of the board, whereas the sensitive ICs which are used to control the
ESP32 are placed on the bottom side, as shown in diagrams @ and @ respectively.

The PCB layout was routed to follow the design rules prescribed in the Appendix. In
addition to the design rules, care was taken to route together the D+/D- and Df+/Df-
differential lines as tightly as possible. Nevertheless, it is not crucial to route these

differential pairs extremely well, since the transmission speed through these lines is
mainly limited by the conversion to UART made by the FT231 IC.

Note that an external IPEX antenna is needed for the ESP32 to function properly.
Otherwise, permanent damage could be made to the Castor board when transmitting to
a radio power level higher than 13dBm.

Render @ is the 3D view of the Castor II PCB.

4. Software
4.1. Pollux III software
Pollux III runs on an STM32H750 microcontroller. All related software was developed using
STM32 CubeIDE 1.13.0 and its corresponding firmware/BSP. FreeRTOS is used as an
operating system. The CMSIS V1 hardware abstraction interface is used to bind FreeRTOS
to the ARM Cortex processor architecture. Compared to bare-bones programming, using
an operating system such as FreeRTOS with CMSIS V1 is useful to allow a pseudo-parallel
execution of multiple tasks. Section 0 describes the System Thread abstraction layer
developed above the FreeRTOS operating system to simplify the development,
maintenance, and testing of software for Pollux III.
The hierarchy of the Pollux III CubeIDE project is decomposed as follows:

1. System: Contains the vast majority of Pollux III software. The folder itself only contains
the System Thread abstraction layer. Its subfolders form a secondary hierarchy:

a. Debug: Puts at disposal debugging and profiling tools that were developed over
my EPFL years.

b. GUI: Contains the Graphical User Interface that allows the microcontroller to
display states, events, and measurements data, as well as to receive user input
from the touch screen to restart some power supplies.

c. Libraries: Englobes all the Pollux III software that could be fully isolated from
the “main” code. Each library fulfils a specific and independent function.

d. Logging: Allows Pollux III to store mission data on a persistent storage.

e. Misc: Stores the miscellaneous code that does not play an important role.

f. Sensors: Manages the Pollux III sensors.

g. Supplies: Manages the Pollux III supplies.

2. Core: Holds the main code and peripheral initialization code, mainly generated by
CubeIDE and bootstraps the launch of the different System Threads in System.

3. Drivers: Encompasses the BSP for the STM32H750 microcontroller, as well as the
CMSIS V1 ARM hardware interface.

4. Middlewares: Contains the FreeRTOS sources.

5. Pollux III.ioc: Represents the physical hardware configuration of a microcontroller. It is
used to configure the pins to their correct function, as well as configuring the system
clock. The system hardware configuration is described in section 4.1.1.

6. Pollux III.launch: Describes the debugging configuration that is used when flashing the
Pollux III software on the STM32H750 microcontroller through a JTAG/SWD
connection. It is usually edited through Run > Run configurations… or Run > Debug
configurations… in CubeIDE.

7. STM32H750VBTX_FLASH.ld: Automatically generated linker script for GCC. Represents

how the data and code are fit into the microcontroller’s memory regions. Changes to
this file may be useful in last resort to access specific memory regions that cannot be
accessed otherwise.

4.1.1. Hardware configuration
CubeIDE provides a software configuration tool (previously known Cube MX). The
microcontroller pins can be configured from a graphical user interface to the
corresponding function, as defined when designing the Pollux III PCB. Figure @ depicts
the used pin configuration and table @ summarizes the activated function for the pins
used.

Pin name Unit Description
PE2 GPIO HVB shutdown pin
PE3 GPIO HVA shutdown pin
PE4 GPIO HVB enable pin
PE5 GPIO HVA enable pin
PH0 OSC High-speed oscillator (30MHz) input
PH1 OSC High-speed oscillator (30MHz) output

PC2 ADC3 Measures a scaled version of the battery voltage
PC3 ADC3 Measures the input 3V3 voltage
PA1 GPIO Address bit 0 for the power monitor multiplexer
PA2 GPIO Address bit 1 for the power monitor multiplexer
PA3 GPIO Address bit 2 for the power monitor multiplexer
PA5 SPI1 SCK SPI clock to the power monitors
PA6 SPI1 MISO SPI master input from the power monitors
PA7 SPI1 MOSI SPI master output to the power monitors
PB1 ADC1 Unused (Legacy)
PB2 QSPI2 CLK QuadSPI clock to the external flash memory
PE7 QSPI2 QuadSPI lane 0
PE8 QSPI2 QuadSPI lane 1
PE9 QSPI2 QuadSPI lane 2
PE10 QSPI2 QuadSPI lane 3
PE11 GPIO Touchscreen active-low chip select
PE12 SPI4 SCK SPI clock to the touchscreen
PE13 SPI4 MISO master input from the touchscreen
PE14 SPI4 MOSI master output to the touchscreen
PE15 GPIO Interrupt lane from touchscreen
PB12 GPIO LVB shutdown pin
PB13 GPIO LVA shutdown pin
PB14 GPIO LVB control pin
PB15 GPIO LVA control pin
PD8 GPIO Unused (Legacy)
PA9 LPUART1 TX (TX to computer) for the JTAG debugger
PA10 LPUART1 RX (TX to microcontroller) for the JTAG debugger
PA11 FDCAN RX for flexible-datarate CAN bus controller
PA12 FDCAN TX for flexible-datarate CAN bus controller
PA13 JTAG/SWD JTMS (state-machine control) for the JTAG debugger
PA14 JTAG/SWD JTCK (clock) for the JTAG debugger
PA15 JTAG/SWD JTDI (data input) for the JTAG debugger
PC11 QSPI2 nCS active-low chip select for the QuadSPI unit
PD0 SAI3 Unused (Legacy)
PD1 SAI3 Unused (Legacy)
PD4 SAI3 Unused (Legacy)
PD5 USART3 TX (TX to WiFi module) for the WiFi module
PD6 USART3 RX (TX to microcontroller) for the WiFi module
PB3 JTAG/SWD JTDO (data output) for the JTAG debugger
PB4 JTAG/SWD JTRST (reset) for the JTAG debugger

PB6 I2C4 SCL line for the I2C communication to the power supplies
PB7 I2C4 SDA line for the I2C communication to the power supplies

In addition to pin configuration, it is necessary to configure the different clock speeds for
each unit. Figure @ illustrates which clock speeds were selected for the main Phase
Locked Loops (PLLs). All units have a base clock speed derived from these PLLs.

Here, the High-Speed Internal oscillator runs at 64MHz but is not used because its
stability is not high enough to achieve optimal performance on the STM32H750
microcontroller. Nevertheless, a High-Speed External oscillator, set at 30MHz, is used as a
base clock. Nine PLLs are defined at 480MHz, 120MHz and 150MHz depending on which
hardware unit requires them.

4.1.2. Thread management
The System Thread abstraction layer makes use of C++ classes to simplify the FreeRTOS
thread management by encapsulating the Thread lifecycle management in an Arduino-
like code structure. Before detailing this abstraction layer, it is necessary to understand
the fundamentals of a real-time operating system, such as FreeRTOS.

4.1.2.1. Foundations of FreeRTOS

This section is mainly based on the FreeRTOS documentation and directly uses figures
and explanations copy-pasted from it.

The kernel is the core component within an operating system. Operating systems such
as Linux employ kernels that allow users access to the computer seemingly
simultaneously. Multiple users can execute multiple programs apparently concurrently.

Each executing program is a task (or thread) under control of the operating system. If
an operating system can execute multiple tasks in this manner it is said to
be multitasking.

A conventional processor can only execute a single task at a time - but by rapidly
switching between tasks a multitasking operating system can make it appear as if each
task is executing concurrently. This is depicted by the diagram below which shows the
execution pattern of three tasks with respect to time. The task names are colour coded
and written down the left hand. Time moves from left to right, with the coloured lines
showing which task is executing at any time. The upper diagram demonstrates the
perceived concurrent execution pattern, and the lower the actual multitasking
execution pattern.

The scheduler is the part of the kernel responsible for deciding which task should be
executing at any particular time. The kernel can suspend and later resume a task many
times during the task lifetime.

The scheduling policy is the algorithm used by the scheduler to decide which task to
execute at any point in time. The policy of a (non real time) multi user system will most

likely allow each task a "fair" proportion of processor time. The policy used in real time
/ embedded systems is described later.

In addition to being suspended involuntarily by the kernel a task can choose to suspend
itself. It will do this if it either wants to delay (sleep) for a fixed period, or wait (block)
for a resource to become available (e.g. a serial port) or an event to occur (eg a key
press). A blocked or sleeping task is not able to execute, and will not be allocated any
processing time.

As a task executes it utilizes the processor / microcontroller registers and accesses RAM
and ROM just as any other program. These resources together (the processor registers,
stack, etc.) comprise the task execution context.

A task is a sequential piece of code - it does not know when it is going to get suspended
(swapped out or switched out) or resumed (swapped in or switched in) by the kernel
and does not even know when this has happened. Consider the example of a task being
suspended immediately before executing an instruction that sums the values contained
within two processor registers. While the task is suspended other tasks will execute and
may modify the processor register values. Upon resumption the task will not know that
the processor registers have been altered - if it used the modified values the summation
would result in an incorrect value.

To prevent this type of error it is essential that upon resumption a task has a context
identical to that immediately prior to its suspension. The operating system kernel is
responsible for ensuring this is the case - and does so by saving the context of a task as
it is suspended. When the task is resumed its saved context is restored by the operating
system kernel prior to its execution. The process of saving the context of a task being
suspended and restoring the context of a task being resumed is called context
switching.

Real time operating systems (RTOSes) achieve multitasking using these same principles
- but their objectives are very different to those of non real time systems. The different
objective is reflected in the scheduling policy. Real time / embedded systems are
designed to provide a timely response to real world events. Events occurring in the real
world can have deadlines before which the real time / embedded system must respond
and the RTOS scheduling policy must ensure these deadlines are met.

To achieve this objective the software engineer must first assign a priority to each task.
The scheduling policy of the RTOS is then to simply ensure that the highest priority task
that is able to execute is the task given processing time. This may require sharing
processing time "fairly" between tasks of equal priority if they are ready to run
simultaneously.

4.1.2.2. System Thread abstraction layer
void systemd_init() from System.cpp is called immediately after the BSP drivers have
been initialized but just before the FreeRTOS kernel is started. The purpose of this
function is threefold. Firstly, it is the root FreeRTOS task, meaning that the “main” code
in this function will be executed immediately after the initialization of the FreeRTOS
kernel. Secondly, it serves as centre point between all System Threads that must be run
simultaneously on the microcontroller, greatly simplifying the inter-thread
communication. Thirdly, it is a function with a signature extern void(void), which
allows it to be called from C code in FreeRTOS.c, but still be embedded in a C++ context.
A System Thread is a C++ class that inherits the Thread class defined in Thread.h. Once a
System Thread is instantiated in systemd_init(), its parent constructor Thread::Thread
is called and a FreeRTOS task is defined. When the scheduler launches the task, it calls
the virtual void init() method once and then runs the virtual void loop()
method in a loop.
Depending on the desired FreeRTOS task configuration, a few constructors can be used:

Thread(const char* name);
 Thread(const char* name, osPriority priority);
 Thread(const char* name, uint32_t stackSize);
 Thread(const char* name, osPriority priority, uint32_t stackSize);

The Thread’s name argument is required for logging and debugging purposes. It should
clearly indicate the System Thread’s purpose.
priority defines the FreeRTOS task priority for the System Thread. One of the
following priorities defined by FreeRTOS can be used:

osPriorityIdle = -3, ///< priority: idle (lowest)
osPriorityLow = -2, ///< priority: low
osPriorityBelowNormal = -1, ///< priority: below normal
osPriorityNormal = 0, ///< priority: normal (default)
osPriorityAboveNormal = +1, ///< priority: above normal
osPriorityHigh = +2, ///< priority: high
osPriorityRealtime = +3, ///< priority: realtime (highest)

It is crucial to carefully select the thread priority, so that tasks that should react to events
quickly or that must run at a precise loop rate have a higher priority.
stackSize defines the amount of stack reserved for a given System Thread. The stack
stores all the local variables in the void loop() method and of all the subfunctions called
by the loop. Managing the stack size is the cause of many troubles, and a good practice is
to keep at the default value… If the Pollux III software starts crashing randomly during

development, it is a good idea to attempt changing the stack size of the System Thread in
development. For debugging, a breakpoint can be inserted in the void
vApplicationStackOverflowHook() and the pxCurrentTCB variable can be inspected
[procedure].

Once a thread has finished running, void terminate() must be called to stop the
System Thread’s main loop. Usually, this method is not used since most System Threads
are designed to run permanently.

Important note: The System Thread abstraction layer defines tasks that can be created
and terminated dynamically through FreeRTOS. The Idle task, which has the lowest
possible priority, is responsible for freeing the resources used by a terminated System
Thread. It is therefore of high importance to allow the scheduler to run this Idle task by
calling osDelay or entering a blocked state in each loop function in the Pollux III code.

void setTickDelay(uint32_t ms) can be used to automatically set a delay in the System
Thread’s loop function.

During development, the method void println(const char* format, ...) may be
useful to transmit information to the serial console. The System Thread name is always
prepended to the message to be printed.

Table @ lists the different System Threads used in Pollux III.

Source Description Priority Stack
SupplyThread Manages the power supplies osPriorityNormal 2048
PowerThread Manages the power monitors osPriorityNormal 2048
WatchdogThread Ensures that FreeRTOS never hangs osPriorityNormal 2048
GUIThread Manages the touchscreen osPriorityNormal 2048
LoggingThread Manages the logging on the storage osPriorityNormal 2048
STMUARTDriver Reads and writes data to Castor II osPriorityRealtime 2048
Shell Reads and writes to the serial console osPriorityNormal 2048

4.1.3. Communication
Computer systems usually communicate with one another through the seven-stages
Open System Interconnection (OSI) model.

All communication systems used in Pollux III are listed in the table @.

Application
Layer

Presentation
Layer

Session
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Supply
control

MCP47
driver

- 24-bits
payload

7-bits
address

I2C frame I2C4

Power
monitor

INA239
driver

- 24-bits
payload

3-bits
multiplexer

SPI frame SPI1

GUI FT813 driver - 8*n-bits
flexible
payload

End-to-end QSPI
pseudo-
frame

SPI4

Castor
interface

RoCo
PowerBus

RoCo RoCo End-to-end UART
frame

UART2

Avionics
interface

RoCo
PowerBus

RoCo RoCo End-to-end CAN-FD
frame

CAN1

IPC RoCo
PowerBus

RoCo RoCo End-to-end Memory AXI

 The Supply control, power monitor and GUI application layers represent the
communication between Pollux III and onboard sensors/controllers. The Castor interface,
Avionics interface and Inter-Process Communication, however, make use of the custom
RoCo protocol and deserve a more thorough description in the following sections.

4.1.3.1. RoCo protocol

Abstract

RoCo, the Xplore's rover communication API, allows the Rover's different subsystems to
communicate with each other. Every peer in a bus network can broadcast a message on
the bus and this message might or might not be handled by the other peers.

Using a high degree of abstraction, this API ensures that a unique software can be
shared across the subsystems without the need of porting or installing additional
software. Since RoCo will also be used on embedded systems, the software is designed
to have a low memory footprint and CPU overhead. Furthermore, static allocation
predominates the code's architecture to avoid potential overflows.

In addition, RoCo also includes the communication protocol, that defines which packets
will be transmitted and received through specific busses.

When using the RoCo API, please do only use the RoCo.h header file.

MessageBus API

RoCo's highest degree of abstraction is the MessageBus API, which defines how packets
are defined, handled, sent or forwarded. This MessageBus class only requires the
implementations to define standard read and write functions to be functional, as
described later. Since memory allocation is static, it was necessary to define a maximum
packet size (256 bytes), as well as a maximum number of unique senders (64).
Moreover, there are at most 64 different packet identifiers.

Packet definition

Every MessageBus method requires an additional type info, which should define the
structure of the considered packet. Packets should always be defined in accordance
with the following scheme.

struct SomePacket {
 // Whatever content you need
} __attribute__((packed));

If you fail to define the structure as packed, extra padding bytes will be added to the
good will of the compiler, which is the most undesirable effect possible since the code is
supposed to be completely portable between different system architectures.

Another extra step to define a packet is to add it to the protocol
register in Protocol/ProtocolRegister.h. Doing so will allocate memory for the template
type of the structure previously defined.

#ifdef YOUR_PROTOCOL
REGISTER(SomePacket)
#endif /* YOUR_PROTOCOL */

Once those steps are done, you may use the MessageBus API to send this packet to any
peer connected to the bus.

Define

template<typename T> bool define(uint8_t identifier)

The define method links the given packet structure to a unique identifier. Every
identifier consist of two routing bits, which are reserved for now, and six identifier bits
that can be freely assigned. It is recommended to define the different packets
supported by the bus in the MessageBus' implementation's constructor. Once a packet
is defined, it can be freely sent, received or forwarded. Otherwise, calling the later
methods will result in failure. The define method will fail if one of the following
conditions is met:

1. The packet identifier is already in use.
2. The packet size is too large (> 256 bytes).
3. The packet type is already defined with another identifier.

Send

template<typename T> bool send(T *message);

The send method allows the user to broadcast a defined packet on the bus. Note that
thank to the template argument, it is not necessary to specify the nature of the packet
being sent: The compiler will infer its nature automatically. The send method will fail if
the provided packet has no assigned identifier.

Receive

template<typename T> bool handle(void (*handler)(uint8_t source, T*));

The handle method allows the user to receive a defined packet from the bus. This
method requires the user to pass a callback function, that will handle the reception of
the given packet. Depending on implementation, the source identifier might or might
not accurately represent the sender of the packet. Note that thank to the template
argument, it is not necessary to specify the nature of the packet being received: The
compiler will infer its nature automatically. The handle method will fail if the provided
packet has no assigned identifier.

Forward
template<typename T> bool forward(MessageBus* bus);

The forward method allows the user to redirect a defined packet from one bus to
another. All packets having the same template type as the passed one will be

retransmitted to the given bus. The forward method will fail if the provided packet has
no assigned identifier.

Writing an implementation of MessageBus

The MessageBus class defines two virtual methods that need to be implemented by
subclasses:

virtual uint8_t append(uint8_t* buffer, uint32_t length) = 0; // Must be atomic
virtual void transmit() = 0;

As you may guess, the append method is used to send data to the bus controller. Note
that in a multithreaded environment, it is required that append gets called in thread-
exclusive context (usage of Lock/Mutex is recommended). In addition, transmit is used
to flush eventual data that might be buffered in the bus controller.

Moreover, the implementation must ensure that receive is called whenever a buffer is
received from the bus. The receive method has the following signature:

void receive(uint8_t senderID, uint8_t *pointer, uint32_t length);
By implementing the two above methods and calling receive when appropriate, the
MessageBus implementation is complete and can be used on every platform that meets
the dependency requirements.

IOBus: A buffered implementation of MessageBus

The IOBus implementation is designed to manage a classic pre-allocated buffer
provided by the constructor. Transmission and reception is managed by a dedicated
class called IODriver. The latter must be inherited and overwrite the following virtual
methods:

virtual void receive(const std::function<void (uint8_t sender_id, uint8_t*
buffer, uint32_t length)> &receiver) = 0;
virtual void transmit(uint8_t* buffer, uint32_t length) = 0;

receive provides the IODriver implementation with a callback reception function. This
callback function must be called whenever there is incoming data from the bus.

transmit signals the IODriver that the given data buffer must be sent to the bus. As for
every I/O driver, it is required for the transmit method to have exclusive context.

NetworkBus: A TCP/IP implementation of MessageBus

The NetworkBus API inherits the IOBus implementation with a standard buffer size of
256 bytes. The only interest in analysing this implementation is the way
the IODriver were developed. Note that NetworkClientIO and NetworkServerIO define
slightly different implementations of the IODriver. For simplicity, we will assume the
low-level implementations of these two IODriver are equivalent.

Using the <sys/socket.h> API, this implementation provides a simple way to
communicate between two peers on a network. Note that this implementation is not
fully compatible with the LwIP Stack, and thus cannot be used on embedded software.

To establish or interrupt a connection, two methods are available for each IODriver.
Their usage is transparent.

NetworkClientIO

int8_t connectClient();
void disconnectClient();

NetworkServerIO

int8_t connectServer();
void disconnectServer();

For both implementations, the packet reception is done by reading from the socket
through an independent thread. Transmission is simply done by writing to the TCP
socket.

Protocol

The latest protocol (version 20W18) implements the following packet structures.
Identifiers are not listed since they are bus-dependant.

Ping packet

Allows the user to assess the bus latency.

• Actual timestamp in nanoseconds as std::chrono::time_point

Connect packet

Signals a new connection on the bus.

• Actual timestamp in nanoseconds as std::chrono::time_point

Disconnect packet

Signals a disconnection on the bus.

• Actual timestamp in nanoseconds as std::chrono::time_point

Request packet

Signals the peers that a given resource is requested.

• Request UUID as uint32_t

• Action identifier as uint8_t
• Target identifier as uint8_t
• Request payload as uint32_t

Acknowledge packet

Acknowledges a request. Undefined if no request was previously performed.

• Request UUID as uint32_t
• Primary state of request as uint8_t

Response packet

Responds to a request. Undefined if no request was previously performed.

• Request UUID as uint32_t
• Action identifier as uint8_t
• Target identifier as uint8_t
• Response payload as uint32_t

Progress packet

Signals the requester that the resource is being processed and defines an actual state of
the request. Undefined if no request was previously performed.

• Request UUID as uint32_t
• Progress information as uint8_t

Data packet

Broadcasts a generic data on the bus.

• Generic data as uint32_t

Message packet

Broadcasts a generic message on the bus.

• Message data as uint8_t[128]

Error packet

Signals the peers that the sender has experienced failure and defines an error identifier
representing the situation.

• Error identifier as uint8_t

Building

Since RoCo is designed to be portable software, the same code base can be run on
multiple platforms. However, some advanced features, such as Network I/O are not
compatible with embedded systems. This is why there are several build configurations
that need to be specified when targeting a specific platform.

Before including the Roco.h header file, it is necessary to declare which platform you
are targetting:

• BUILD_FOR_CONTROL_STATION
• BUILD_FOR_NAVIGATION
• BUILD_FOR_AVIONICS
• BUILD_FOR_TESTING

It is also of crucial importance that all the peers on the same bus communicate with the
same version of RoCo and, in particular, with the same protocol specification.

To enforce this, please do always specify and check the target protocol version
in Build/Build.h. The latest implementation is version 20W18.

Examples

1. Client to client communication through a server.

Alice and Bob want to assess the quality of the link that connects them. In
fact, Alice and Bob are both connected to Carol, which routes messages
from Alice to Bob and from Bob to Alice. Alice tells Bob that she is going to send him her
actual time. When Bob receives the message, he will compare his actual time to Alice's
actual time and compute by how much it differs. For simplicity, we
assume Alice, Bob and Carol are one the same machine.

Since Carol is only supposed to send what she receives, using the forward method is
appropriate. The implementation of the transmission and reception becomes trivial
with the RoCo API:

void handle_ping(uint8_t sender_id, PingPacket* packet) {
 std::cout << "Ping C2C: " << (PingPacket().time - packet->time).count() <<
"ns" << std::endl;
}

int main() {
 NetworkServerIO* carol_io = new NetworkServerIO(42666);
 NetworkClientIO* alice_io = new NetworkClientIO("127.0.0.1", 42666);
 NetworkClientIO* bob_io = new NetworkClientIO("127.0.0.1", 42666);

 carol_io->connectServer();
 alice_io->connectClient();
 bob_io->connectClient();

 NetworkBus* carol_bus = new NetworkBus(charlie_io); // Alice-Carol-Bob bus

 NetworkBus* alice_bus = new NetworkBus(alice_io); // Alice-Carol bus
 NetworkBus* bob_bus = new NetworkBus(bob_io); // Carol-Bob bus

 carol_bus->forward<PingPacket>(carol_bus); // Rebroadcast on the Alice-Carol-
Bob bus
 bob_bus->handle(handle_ping); // Configure the reception

 PingPacket packet;
 alice_bus->send(&packet); // Send to Carol, who will send to Bob
}

4.1.3.2. Inter-thread communication

The RoCo protocol is used to allow different threads to communicate with one
another.

4.1.3.3. Castor interface
4.1.3.4. Avionics interface

4.1.4. Supply management

4.1.5. Power monitoring
4.1.6. GUI
4.1.7. Logging

 This section describes how the power system logs the mission data on a persistent
storage. The logging system ensures that the mission data is robustly stored and can be later
retrieved by the operator. As usual, the description of the design follows a top-down
approach, first describing the high-level design and ending with the low-level persistent
storage drivers.
 The target flash memory is a 512Mb Micron Serial NOR Flash Memory (3.3V, Multiple I/O,

4KB, 32KB, 64KB, Sector Erase). To store data on this device, a three-layers design was
implemented.

 The first layer is implemented as a System Thread that gathers all information that
must be logged on a persistent storage.
 The middle layer - the so-called RocketFS (RFS) – provides the developers with a
filesystem-like structure. It allows device mounting, unmounting, formatting, as well as file
creation, deletion and streamed I/O operations.
 The last layer consists of a low-level hardware-dependent code that allows
read/write/erase operations on the flash memory.

4.1.7.1. Flash memory driver
4.1.7.1.1. Hardware definitions

 The file ‘Inc/MT25QL128ABA.h’ contains definitions of the different commands that
can be set in the flash control register to execute some operation. If it was decided, in
the future, to change the flash memory (e.g., for higher capacity), this file should be
modified accordingly. Please pay attention to the fact that we are using a NOR flash
memory, meaning that, when a bit is erased, its value is one and when a bit is

programmed, its value becomes zero. Once a bit is zero, it cannot be reset to one unless
a full erase of the current sector or subsector is performed.

4.1.7.1.2. QSPI wrapper

 The file ‘Src/qspi_driver.c’ is used to provide an access to the HAL QuadSPI driver that
is used to communicate with the flash memory. The reason to use an intermediate
wrapper and not to directly use the HAL driver was to limitate the number of features
available. In fact, the QSPI_CommandTypeDef construct gives the developer too much
control over irrelevant flags or options. The wrapper is thus here to enhance the clarity
of the code.

Since the QSPI_CommandTypeDef structure stores all information necessary to
communicate to the flash driver, it was necessary to create a wrapping structure called
‘Command’ (io_driver.h). Nonetheless, it is deprecated to create this structure manually.
Please use the Command get_default_command() function instead. If an address is required by
the command, make use the void with_address(Command*, uint32_t) function and, if data is
needed, use the void with_data(Command*, uint32_t) function.

Running a command is achieved through bool qspi_run(Command*, uint32_t). Further, data
transmission and reception can be done with bool qspi_transmit(uint8_t*) and bool

qspi_receive(uint8_t*) respectively. If polling is needed, for instance to wait for the flash
memory to be ready to process to the next command, the function bool qspi_poll(Command*,

uint32_t, uint8_t, bool) polls the given bit for an expected value. Note that all those functions
return a boolean value representing whether the HAL API call was successful or not.

The implementation of those methods is pretty straight-forward once the reader is
familiar with the documentation of the HAL QuadSPI [RD02] functions and the hardware
specification of the flash memory [RD01].

4.1.7.1.3. I/O driver

Access to the flash driver is made through the following functions:
void flash_read(uint32_t address, uint8_t* buffer, uint32_t length)
void flash_write(uint32_t address, uint8_t* buffer, uint32_t length)
void flash_erase_all()
void flash_erase_subsector(uint32_t address)

void flash_erase_sector(uint32_t address)

First of all, reading from the flash memory is not very complicated once there is a
QuadSPI wrapper. In fact, the only operations to do are to craft a command using the
given address and data length. Then, the command is run and qspi_receive(uint8_t*) is used
to indicate where to place the data read from the flash memory.

In contrast to the void flash_read function, writing is much more complicated. This is due

to the fact that the write buffer is limited to 256 bytes (defined in Inc/MT25QL128ABA.h).
Even the documentation of the flash memory does not state this limitation clearly. To
mitigate this problem, the input buffer must be split in different sub-buffers of 256 bytes
each. This is the reason why void flash_write contains a while loop alongside with some
modulo operators: it has to split the buffer before attempting to write it to the flash
memory. For each sub-buffer, void __flash_write_page does the job of writing the content of
the buffer to the flash memory. Note that it is necessary to enable the write latch before
executing the write command. At the end of the void __flash_write_page function, several

safety checks are made. Firstly, the microcontroller waits for the data to be completely
transmitted (through polling) and then checks if a protection fault occurred while writing
to the memory.

Once the reading and writing mechanism are fully understood, the erase operations
are no surprise and won’t be detailed in this document.

1.1.1 Concept
 The RocketFS library has been implemented independently of all other software
parts to avoid interference. For this purpose, a special github repository was created1.
 RocketFS is a standalone library, meaning that it does not require any additional
software or hardware to be properly built or tested. In fact, as mentioned in the test
procedure, a NOR flash memory emulator is available to test RocketFS.
 The idea behind RocketFS was to find a lightweight solution to the issues caused by
the FAT32 library, that led several boards to stop functioning during the main flight of the
SA Cup 2019. Since lightweight does not mean simplistic, the most crucial features of a
classic filesystem are still implemented. Among those are the ability to create and destroy
independent files, a block management system, a memory protection mechanism and a
streamed file access. To fulfil the need of saving the most important data, a feature to
overwrite the oldest files when the device is full was also implemented. I will go through
these features in the following sections.

1.1.1.1 Files

For a filesystem without files would not be called a filesystem, implementing
those was a necessity. It is true that having a complete filesystem is not very useful if
you think of the avionics software as a simple communicator that logs and transmits
sensor data. For future avionics teams, however, it may be interesting to be able to
store persistent data into a hostboard. This is the main reason why I implemented
RocketFS. File creation, deletion and touching2 are all implemented. Due to memory
limitations, the current version of RocketFS limits the number of possible files to 16.
Filenames are also limited to 16 characters.

1.1.1.2 Block management

Dynamic memory (such as a filesystem in our case) always comes with a way to
split memory non-linearly in some blocks with a well-defined size. This is due to the fact
that a file without a well-defined size must always store some metadata about where
the file “segments” are located. To illustrate why such a feature is needed, let’s suppose
we are flying our beautiful rocket for the second time today. During the first flight, the
avionics logged some state-related data inside a file called FSM_DATA. The second
flight, however, is supposed to log only GPS coordinates in a GPS_DATA file. The avionics
boots, creates a GPS_DATA file just after the last byte of FSM_DATA and starts filling it
with data. The rocket takes off and touches down as expected (this time). At that point,

1 https://github.com/EPFLRocketTeam/RocketFS
2 No bad joke. Touching a file means setting the file’s last modification date to now.

the ground station finds out that the touchdown state has not been detected during the
first flight… it then sends a command to the avionics to write the missing data to the
FSM_DATA file. The question is: where is this missing data going to be written?

A bad solution would be to write it just at the end of the FSM_DATA file because
it would overwrite the beginning of GPS_DATA. It is now clear that a way to recognise
which block is already used and which one is not, is needed.

FSM_DATA FSM_DATA GPS_DATA GPS_DATA GPS_DATA GPS_DATA Free block Free block

 Wrong address Correct address

Fig. 1: Wrong addressing algorithm (linear) versus block addressing

1.1.1.3 Memory protection

The memory protection feature has the only purpose of avoiding overwriting an
existing file by error. If the Stream API is used, this feature guarantees that the read or
write operations won’t interfere with the other files.3

1.1.1.4 Streamed I/O

 The Stream API was implemented, together with the memory protection feature,
to prevent the developer from accessing the flash memory directly. Instead, passing by
a stream ensures that read and write operations are always done to memory locations
where they are permitted. Moreover, convenient functions are implemented to handle
16-bits, 32-bits and even 64-bits I/O operations. Another advantage of a streamed I/O
is that the developer does not have to know at which address she or he is going to read
or write. Since RocketFS and the flash driver upon which it relies are not designed to
be thread-safe, it is only possible to create one stream at a time to deter the developer
from accessing the library from different threads. This means that closing the stream at
the end of using it is not only recommended, but it is also of greatest importance to
avoid data corruption. These different design considerations are resumed in the
following doxygen-generated figure.

3 This is exactly the feature which failed during the Kaltbrunn 03/20 launch.

Base address resolution Multi-byte I/O functions Memory protection

Fig. 2: I/O Stream API layers

1.1.1.5 Resilience

 Flight data is particularly sensitive. We cannot afford losing new data after the
device’s maximum capacity is reached. The concept behind resilience is to discard the
oldest blocks in the filesystem to always ensure that the newest data is saved. The way
to recognise which block is the oldest will be further explained in the 4.2.4 section.

1.1.2 Usage

 All RocketFS functions require an instance of a FileSystem structure. The latter
contains all information required to perform RocketFS I/O operations. In general, the
library does not save state information. To allocate a FileSystem structure, do not use
dynamic allocation.

Once a FileSystem instance is defined, the following functions are available:

void rocket_fs_debug(FileSystem* fs, void (*logger)(const char*));
void rocket_fs_device(FileSystem* fs, const char *id, uint32_t capacity, uint32_t block_size);

void rocket_fs_bind(
 FileSystem* fs,
 void (*read)(uint32_t, uint8_t*, uint32_t),
 void (*write)(uint32_t, uint8_t*, uint32_t),
 void (*erase_block)(uint32_t)
);

void rocket_fs_mount(FileSystem* fs)
void rocket_fs_unmount(FileSystem* fs)
void rocket_fs_format(FileSystem* fs)
void rocket_fs_flush(FileSystem* fs)
File* rocket_fs_newfile(FileSystem* fs, const char* name, FileType type)
void rocket_fs_delfile(FileSystem* fs, File* file)
File* rocket_fs_getfile(FileSystem* fs, const char* name)
void rocket_fs_touch(FileSystem* fs, File* file)
bool rocket_fs_stream(Stream* stream, FileSystem* fs, File* file, StreamMode mode)

 Nonetheless, those functions are not always available and may have some runtime
requirements. For instance, it is not possible to create a new file if the hardware I/O has
not yet been bound to the FileSystem structure. As a consequence, there is a precise
procedure to initialise and destroy the filesystem.

1.1.2.1 Device initialisation (required)

 void rocket_fs_device(FileSystem* fs, const char *id, uint32_t capacity, uint32_t block_size)

Using the FileSystem instance, this function defines the hardware characteristics of the
flash memory to which the device is bound. For optimal performance, ensure that the
block_size equals the square-root of the capacity. Moreover, a device identifier may be
declared. This identifier will be later available through the FileSystem structure and is
not used by the library. Do not use this function while the filesystem is mounted.

1.1.2.2 I/O Bindings (required)

void rocket_fs_bind(
 FileSystem* fs,
 void (*read)(uint32_t, uint8_t*, uint32_t),
 void (*write)(uint32_t, uint8_t*, uint32_t),
 void (*erase_block)(uint32_t)
)

rocket_fs_bind is used to bind the filesystem instance to the hardware driver. The read,
write and erase_block parameters are function pointers that are compatible with the
FlashAPI specification. The read and write function pointers require an address, a buffer
pointer and a length to be specified. The erase_block function pointer only requires an
address as parameter.

1.1.2.3 Mounting (required)

void rocket_fs_mount(FileSystem* fs)

Mounting is an operation that loads the most important data stored in the device and
makes it possible to create, modify and delete files. This function requires the device to
be initialised and bound. If the device is corrupted or empty, the device is firstly
formatted.

1.1.2.4 Unmounting (required)

void rocket_fs_unmount(FileSystem* fs)

This function saves the current state of the FileSystem structure into the device, that is
which blocks have been (de)allocated. The filesystem must be mounted to perform this
operation.

1.1.2.5 File management
File* rocket_fs_newfile(FileSystem* fs, const char* name, FileType type)
void rocket_fs_delfile(FileSystem* fs, File* file)
File* rocket_fs_getfile(FileSystem* fs, const char* name)
void rocket_fs_touch(FileSystem* fs, File* file)

The ability to create, delete and modify files is crucial to a filesystem. The way these
functions are defined should be more or less intuitive. Nonetheless, the rocket_fs_newfile

function takes a file type as parameter. Currently, only the RAW file type has been
implemented.

 Further, the File structure returned by rocket_fs_newfile and rocket_fs_getfile is used to create
I/O streams and to retrieve some file metadata.

typedef struct File {
 char filename[16];
 uint32_t hash;
 uint16_t first_block;
 uint16_t last_block;
 uint32_t length;
 uint16_t used_blocks;
 uint16_t reserved;
} File

As you may see on the structure definition, the length of a file and the number of blocks
it uses can be found in this structure.

1.1.2.6 Stream API

bool rocket_fs_stream(Stream* stream, FileSystem* fs, File* file, StreamMode mode)

To use the Stream API, it is necessary to create a Stream instance beforehand. This
structure will be the only way to read or write to a file. A stream may either be opened
in APPEND or in OVERWRITE mode using the last parameter of rocket_fs_stream. The
append mode is mainly used to write at the end of a file, without overwriting the
previous content. This mode is not compatible with read streams. The overwrite mode,
however, is mostly used for read streams. It sets the read cursor at the beginning of a
file.

The Stream instance, once initialised by rocket_fs_stream, can be used to read or write to a
file. The definition of this structure is as follows:

typedef struct Stream {
 bool* eof;

 void (*close)();

 int32_t (*read)(uint8_t* buffer, uint32_t length);
 uint8_t (*read8)();
 uint16_t (*read16)();
 uint32_t (*read32)();
 uint64_t (*read64)();

 void (*write)(uint8_t* buffer, uint32_t length);
 void (*write8)(uint8_t data);
 void (*write16)(uint16_t data);
 void (*write32)(uint32_t data);
 void (*write64)(uint64_t data);
} Stream

The generic read write operations are accessible through this structure. In addition to
this, multibyte support allows to read or write standard uint without having to create
dedicated buffers. The eof flag detects if the end-of-file has been reached. This flag
should never be set in write mode. Note that the current implementation does not allow
file sizes other than multiple of 64 bytes. Therefore, the read operation may read
additional bytes, up to 63 bytes of 0xFF value, before setting the eof flag to one. One
common error is to access eof as if it was a boolean. Namely, as it is a pointer, you
should deference it before checking its value. For example, while(!stream.eof) is always false
but while(!stream->eof) is the correct loop condition.
Most importantly, once a stream is not needed anymore, close it as soon as possible. In
fact, remember that only one Stream is possible at a time.

1.1.2.7 Formatting

void rocket_fs_format(FileSystem* fs)

Formatting the filesystem restores it to its initial state. It erases all information about
the allocated blocks and created files. Use this function with caution.

1.1.2.8 Flushing (optional)

void rocket_fs_flush(FileSystem* fs)

Flushing the filesystem from time to time is recommended. In the case of a power
failure, flushing guarantees that the allocated blocks are correctly saved to the device
and that no data is overwritten.

1.1.2.9 Debugging (optional)

void rocket_fs_debug(FileSystem* fs, void (*logger)(const char*))

Having information about the success or failure of a given operation is often very
welcome. This is why a debugging feature is implemented in RocketFS. The second
parameter of rocket_fs_debug is a function pointer to a logging function. This pointer is
called with an information or error message as parameter.

1.1.3 Architecture

For RocketFS does not need to be tested with a hostboard, the github repository
does not contain any additional file related to CubeMX nor any hardware-specific code.
RocketFS compiles in the form of a static library. It is therefore necessary to link it correctly
in the external application.

The directory structure is quite classic. The root directory contains an eclipse project
file, a doxyfile (and its generated documentation), the main Src and Inc folders, as well as
a Test directory4. It also contains a Headers folder and an example memory dump
FLASH.DMP used by the flash emulator.

The Headers directory contains the only header files that should be included by

external applications.
The main source code is dispatched between four source files, namely ‘filesystem.c’,

‘file.c’, ‘stream.c’ and ‘block_management.c’. The most important structures are defined
in the header files, such as the FileSystem, Stream and File structures.

File filesystem source file contains all functions related to high-level file

management, such as file creation, file deletion, touching, device initialisation, mounting,
etc. (see 4.2.2 for details).

‘file.c’ principally contains utility functions to handle file names. Among those are

string hashing, string copying and string comparing.

 The stream source file contains the multi-byte read and write function definitions.

It also contains the current file read and write pointers.

On the other hand, ‘block_management.c’ along with ‘block_management.h’ should

be only used internally by RocketFS. Do not attempt using these functions from an external
application. This source file includes notably the way blocks are allocated, deallocated and
reallocated, as well as the memory protection feature.

4 See test procedure 2020_AV_TP_0008_AV_FLASH for further details.

1.1.4 Implementation

 An overview of the current implementation of RocketFS will be given in this section.
Please do not hesitate to refer to the real code and documentation available in the github
repository. Not every aspect of the source code will be reflected here, yet only the most
relevant and difficult parts of the code. Keep in mind that erasing a block costs time and
that once a bit is set to zero, it is not possible to reset it to one, unless the whole block is
erased. It is a property of NOR flash memories for which RocketFS was implemented.

1.1.4.1 Filesystem format

The device’s memory is subdivided in different blocks. Some of those are used by
the filesystem to store metadata, journals and backups.

Each data block starts with a block header of 16 bytes. The first four bytes
represent a magic number (0xC0FFEE00) and is used to avoid overwriting of an already-
allocated block if there is a bug. The next two bytes are the file identifier to which the
given block is attached. Byte 6 to 7 represent the predecessor block ID. The next 8 bytes
describe the used amount of memory inside the block. Each bit of these 8 bytes
represent a cell inside a block. If a cell is written in the memory, its corresponding bit is
set to zero. Since a block consists of 4096 bytes, there are 64 cells, each 64 bytes long.
Moreover, if the block is the root of a file, 16 bytes are reserved to store the file name.

Block 0 is called the ‘Core block’ and is supposed to store a magic number and

some metadata. The magic number is used to recognise if a device is compliant with the
RocketFS format or if it can be fully erased. The way this magic number is implemented
supports even high degrees of data corruption, meaning that even if the device is highly
damaged, the filesystem will recognise that there is still some valid data and will not
erase the device. Concrete implementation is shown in Appendix 1.

Block 1 is the ‘Master partition table’, containing information about the type of

content (4 bits) and the age of a given block (4 bits). Since the size of a block is required
to be the square root of the device’s capacity, it is guaranteed that each block has its
own entry in the partition table.

Block 2 is supposed to be used as a recovery partition table. However, this feature

is not yet implemented.

Block 3 to 6 (inclusive) are also supposed to be backup partition table slots, but

are not yet implemented as such.

Block 7 is the filesystem’s journal. It should log each filesystem modification that

is made to the filesystem. In the case of a power failure, it should be possible to restore
a consistent state of the filesystem using the journal. Nevertheless, it is also still not
implemented.

Block 8 to 4095 (inclusive) are data blocks. They store raw file data and have a
particular structure.

Finally, blocks 4092 to 4095 (inclusive) are reserved for testing purposes.

1.1.4.2 Partition table

 The partition table contains information about which block has been allocated and
which one is free. If a block is allocated. Its allocation time and its file type are stored.
Four bits represent the file type and the next four ones describe the age of the block.
To avoid the need of erasing and reprogramming the partition table block each time a
new block is allocated, two buffers are stored in the FileSystem structure: the partition
table and its one-complement. When a file is closed or the file system is unmounted,
the partition table is flushed to the device. If the above conditions are not met, data
might be overwritten (Kaltbrunn 03/2020). It is worth noting that the partition table is
not written ‘as is’ to the device. Instead, its complement is computed and written to the
device. This has the advantage to increase the lifetime of a NOR flash memory since
there are less zeroes to write and erase than if we wrote the partition table directly.

 Even though the meaning of the file type nibble is quite clear, the age nibble is
much less so. This information is used to estimate which block would be best to
reallocate if the device’s maximum capacity is reached. Time, in RocketFS, has a
particular meaning and represents by no means an actual time or timestamp. In fact,
the limitation of having to store a time information in 4 bits (value ranges from 0 to 15)
forces us to find another time source. For this purpose, the age of the ‘Core block’ (block
0) is used. Initially, its value is set to 14 and each time the device loses 1/16 of its
capacity, the value is decreased.
 For instance, the BellaLui flash memory has 16MB of memory. The first allocated
blocks have all an age value of 14. When there is only 15MB of memory left, the age
value of all the first blocks is decreased to 13 and the new blocks are aged 14. When
there is 14MB left, the first blocks’ age are decreased to 12, the next blocks’ age are
decreased to 13 and the new blocks will be aged 14, and so on.

1.1.4.3 Mounting the filesystem

Mounting the filesystem is quite a complex procedure and will be explained here
as an example to illustrate the methodology to develop RocketFS. To guide you, Fig. 3
shows the doxygen call graph generated for rocket_fs_mount.

Magic number verification

Block management initialisation Multi-byte I/O functions Memory protection

Fig. 3: rocket_fs_mount call graph

The first step in the mounting procedure is to compare the first bits of the device
with the expected magic number value. If the magic number comparison algorithm (see
Appendix) detects an incorrectly formatted device, it performs a call to rocket_fs_format to
reset the device to an initial formatted state.

Otherwise, the partition table is read into the FileSystem structure’s
reverse_partition_table buffer and its complement is computed and stored in the
partition_table. The block management has now to be initialised before the mounted flag is
finally set to true.

This initialisation process happens in two stages. First, the partition table is
scanned to detect all the created files in the device. Then, the block hierarchy is resolved
and the file sizes computed.

Since flash memories are random access, it is not very performance-consuming to
read the beginning of each block. This is actually the way the files are detected: the
header of each allocated block is read and parsed. If the block has no predecessor, it
must either be considered as the beginning of a file or as a lost block. The case of a lost
block is a very special case when the device’s maximal capacity is reached, and so won’t

be explained here (refer to 4.2.4.5 Case 3 for details). On the other hand, if the block is
recognised as the first block of a file, the actual filename is read, copied and hashed in
a File structure. If the block has a predecessor, the data_blocks structure field is updated
accordingly.

The second initialisation stage attempts to resolve the block hierarchy. Using the
FileSystem’s data_blocks substructure (must be thought of as a linked list), the size of the
file is computed and updated in the correct File structure. It might be interesting to
implement an algorithm to detect if there is a cycle in the linked list (caused by
corruption), such as Tarjan’s algorithm.

1.1.4.4 File management

The different files are stored in the FileSystem structure in the form of an array of
File substructures. Since the number of entries in this array are very limited, RocketFS
makes use of hashing to compute a file identifier associated with a file name. This
guarantees O(1) file fetching. Note that hash collisions are handled by incrementing the
hash value until there is no more collision. File names are limited to 16 characters
(including or excluding the \0 character). The implementations of rocket_fs_newfile,
rocket_fs_delfile and rocket_fs_getfile are, I believe, relatively clear.

1.1.4.5 Block allocation

Block allocation and memory protection are complementary to each other and

are designed to be completely transparent to the external application. These features
operate before each call to the native read and write functions through rfs_access_memory.
This function is used exclusively by the Stream API. The purpose of rfs_access_memory is to
detect when the read or write pointer are at the end of the current block and to jump
to the correct read or write location. This location changes given certain circumstances
that are listed below.

Case 1: If the requested address is inside the header protected area, the pointer is

incremented to the first readable or writable byte.

Case 2: If the requested address is the last byte of a block, plus one, the end of a block
is effectively reached and the requested operation must be analysed. If the
Stream API wanted to read some bytes, then the function should return
immediately and tell the Stream API to set the EOF flag to one. No bytes are
remaining in the requested file.

Case 3: If the Stream API requested to write several bytes, it would be necessary to

allocate a new block and update the file metadata accordingly. This
procedure is achieved through rfs_block_alloc. This function iterates through the
whole partition table in order to find the block with the lowest age value,
which is the oldest block. If, during the iteration, a free block is found, then it
is allocated and returned immediately. Otherwise, all blocks are allocated and

the device is full. This means that a block must be reallocated and the best
candidate for this purpose is the oldest block allocated. However, reallocation
breaks the block hierarchy (linked list) and there is a necessity to mitigate this
issue. Thus, if the block to be reallocated has a successor, the latter is marked
as a lost block, since its “predecessor” value doesn’t make sense anymore.
During the initialisation of the block management, the lost blocks are
reattached to the nearest preceding block that belongs to the same file. As
you can imagine, this “reparation” can possibly fail and attach two blocks
incorrectly. However, I don’t see any better way to recover a lost block that
doesn’t require the rewrite of a full block. The only way to partially avoid this
is either to ensure the device’s capacity is never reached (which we cannot
guarantee) or to reduce the entropy of the filesystem: so please, avoid
creating and deleting lots of files and reduce as much as possible the number
of files you use.

This function may also restrict the number of bytes that can be read or written.

Namely, no I/O operations should ever read or write for lengths greater than the length
of the current block, minus the current pointer position. For this reason, an internal
address is computed at the beginning of the function to represent the current pointer
position (internal_address = 1 + (*address - 1) % 4096).

Finally, the usage table is updated if the requested operation is a write.

4.1.7.2. RocketFS

4.1.8. Watchdog

As a safety measure on the Pollux III hardware, a watchdog was implemented to keep
track of FreeRTOS’ state. If the FreeRTOS scheduler hangs because of a failing Thread or
other reasons, the Pollux III software is automatically reset by the watchdog.

A watchdog is a particular timer in the low-power domain of a microcontroller. If the
timer reaches its output compare value, an interrupt is triggered, and the Pollux III
software is reset.

The purpose of the WatchdogThread System Thread is to reset this watchdog timer, so
that it never reaches the output compare value in nominal conditions. If, however, the
WatchdogThread hangs because of any other functionality on the board has failed, then
the watchdog timer is not reset, an abnormal condition is detected, and the board is
reset.

4.2. Castor II software
A 40-pin board to board extension connector allows the Pollux III hardware to be
connected to an external device. Castor II was developed to transmit information gathered
by Pollux III through a wireless connection and complies with the specifications of this 40-
pins extension connector.
Castor II is a PCB featuring an ESP32 2.4GHz WiFi module, developed by Espressif. ESP-IDF
V5.1 (Eclipse IDE variant) is used to develop the Castor II firmware.
The whole complexity of this software has been to embed an HTTP server, a Graphical
User Interface (GUI) and a web API inside a microcontroller with very little RAM and flash
memory.
The purpose of Castor II is to allow a computer or smartphone to connect to a WiFi
network created by the ESP32. In this WiFi network, the web address http://192.168.1.42
opens a website generated by Castor II which displays information related to the power
system. It allows a seamless control and monitoring of Pollux III’s power supplies. In
addition, an API is available under the web address http://192.168.1.42/api. See section 0
for further details on the usage of this API.
In the following sections, the end-user (who uses the website or the API) will be referred
to as the client. The client performs requests (HTTP request) to Castor II, also known as the
server. The server then responds (HTTP response) with HTML code that can be displayed
using the client’s web browser for example.
The hierarchy of the Castor II ESP-IDF project is decomposed as follows:

1. System: Contains the backend of the Castor II software. The folder itself contains the
System Thread abstraction layer, consisting of Thread.cpp/h and System.cpp/h, as well
the Event dispatcher and logic interfaces that connect the HTTP request handlers to
the Pollux III data bus and the API. Its subfolders form a secondary hierarchy:

a. Status: Provides some basic feedback on the state of Castor II through the PCB’s
internal LEDs and the serial console.

b. Telemetry: Manages the API backend.

2. HTTP: Takes the responsibility to handle HTTP requests and to deliver the raw HTML
data to the client.

a. UI: Handles all HTTP requests related to the graphical user interface itself (the
multiple pages on the website).

b. Common: Handles all HTTP requests related to auxiliary libraries, scripts, and
graphical elements needed (Bootstrap 4, JQuery, the Xplore logo, the API, the
main JS script).

c. Data: Contains the raw HTML data that is transmitted through the HTTP
handlers in UI and Common.

3. Drivers: Encompasses the basic drivers to allow communication between Castor II and

Pollux III through the 30-pin interface connector.

4. RoCo: Contains the RoCo communication protocol stack. See section 4.1.3.1 for further

details.

4.2.1. Website
Each time the client wants to reach a webpage, it uses its web browser to perform an HTTP
request to the corresponding website. It is useful to firstly understand how HTTP requests
are performed:

When browsing to an URL such as https://epfl-xplore.ch/kerby-project-2023/, the
following analysis is made by the web browser:
The DNS address must be first used to find the IP address of the target server. The IP
address contains information on how to reach the server that stores the website. Here,
epfl-xplore.ch is the DNS address which can be resolved by a DNS lookup to the IP
address 87.98.255.4.
The port defines to what TCP server socket the client refers to on the target server. It is
often uniquely defined by the protocol being used. Here, https:// defines the protocol
used (HTTPS) and the port used (443).

The URI defines what resource is requested by the client. An URI is a relative link to the
website’s IP/DNS address. /kerby-project-2023 is the URI requested by the client on the
HTTP server.

4.2.1.1. Access point
The WiFi access point created by the ESP32 is configured in Main.cpp. It setups the WiFi
network name, password and related configurations. Table @ lists the configuration
used:

Configuration entry Value
SSID ERC_Xplore_2.4GHz
Password See section 5.3.11
Channel 11
Maximum connections 4
Authentication mode WPA2/PSK
IP address 192.168.1.42
Gateway address 192.168.1.1
Subnet mask 255.255.255.0
Bandwidth 20MHz

4.2.1.2. HTTP server
The HTTP server in HTTPServer.cpp/h allows the main code in System.cpp/h to register
the multiple URIs needed by the website and handles the client’s requests by serving
them with the corresponding content.
The Castor website consists of multiple interlinked URIs.
An HTTP request handler in HTTPRequestHandler.cpp/h is associated with each of these
URIs.
The website structure is summarized by the following tables.
URIs related to the frontend:
URI Content-type Source files Description
/ text/html Dashboard.cpp/h Gives a system overview
/supplies text/html Supplies.cpp/h Shows the state of the supplies
/safety text/html Safety.cpp/h Shows safety information

/diagnostics text/html Diagnostics.cpp/h Shows diagnostics information
Real webpages are associated with these four URIs. They define the static graphical
content the end-user sees on its web browser. Hyperlinks embedded on the webpages
connect the pages with one another. The webpages include the backend scripts and
libraries needed to make the website dynamic and show real-time information about
the power system.
URIs related to the backend:
URI Content-type Source files Description
/api application/json Backend.cpp/h API
/js/main.js application/javascript MainScript.cpp/h Binds API to webpages
/download application/octet-stream Download.cpp/h Transfers mission data

A Javascript script /js/main.js performs the API calls to the /api URI that make the
website dynamic either on a regular basis (to refresh the sensor values) or momentarily
when the user interacts with the GUI (to perform a specific action). The /download URI
is used to download the mission data stored on Pollux’ persistent flash memory.
URIs related to the libraries:
URI Content-type Source files
/css/bootstrap.min.css text/css Bootstrap4CSS.cpp/h
/js/bootstrap.min.js application/javascript Bootstrap4JS.cpp/h
/js/jquery.min.js application/javascript JQuery.cpp/h

 The Bootstrap 4 library is used to add a modern look to the HTML webpages. It mainly
uses CSS and Javascript to add graphical content and animations to the website.
JQuery is a well-known Javascript library that allows the HTML webpages to be updated
dynamically. It is used to change the website’s content when new sensor data is
available from Pollux and to perform specific actions when the end-user interacts with
the website.

4.2.2. Thread management
To simplify the development of the Castor II firmware, the System Thread abstraction
layer developed for Pollux III was ported to the ESP32 hardware platform. See section
4.1.2.2 for further details.
The main difference in implementation between Pollux III and Castor II is that the ESP32’s
entry point for user code is written in C++ already, eliminating the need for a void
systemd_init() function. Instead, the thread constructors are called by the constructor
System::System class in System.cpp.

The following API changes between the STM32 port and the ESP32 port had to be
performed:

- void Thread::start() must now be called to start the System Thread and add it to
the FreeRTOS scheduler’s task list.

- void Thread::terminate() is no longer available.

4.2.3. Event dispatcher
In Pollux III, the inter-thread communication was guaranteed by the RoCo protocol. By
design, RoCo is synchronous and does never make a copy the information to be sent to a
bus. This implies an obvious memory efficiency and speed advantage.
Nevertheless, when using a LoopbackDriver, the System Thread that sends a message is
also responsible for calling the handlers registered for this message.
For example, if the user interface System Thread wants to send a signal to stop a power
supply, it sends a message to the RoCo bus which calls the handler that should stop the
power supply. The problem here is the user interface System Thread must be blocked
until the handler is done stopping the power supply.
This is not acceptable in event-driven applications and with this regard, an Event
dispatcher was implemented and is used to carry small signals/events through the Castor
II firmware.
The event dispatcher concept presented here is grossly inspired by the Javascript DOM
and Java AWT. Figure @ depicts the difference between synchronous event dispatching
and asynchronous event dispatching. With synchronous dispatching, the speed and
latency of the System Thread is always limited by the speed at which each event is
processed. In asynchronous dispatching however, every time a new event is received, it is
added to an internal queue. Another System Thread then addresses the event in parallel
and bears the load of processing the event.

The event dispatcher has two methods to fulfil its functionality.
Firstly,

bool setUpdateSubscriber(subscriber_id, std::function<void(UpdateEvent*)>)

is used to register an event handler for a given subscriber ID. The subscribers IDs
must be one of EVENT_LOG, FSM, SUPPLY_MGR, HEALTH_MGR, USER_FB in order of dispatch
priority. The function given in argument to this method will be called every time an
event is requested. All events are then broadcasted to the subscriber.
This method returns false if there is a subscriber already registered for the given
subscriber ID or if the subscriber ID is incorrect.

Secondly,

bool requestEvent(UpdateEvent);

is used to add an event to the event queue. Custom defined events in Events.h can be
defined by inheriting the UpdateEvent class. An event type must be assigned to the
custom event by calling the UpdateEvent constructor with a given event_t type. These
types are currently defined by the following enum in EventDispatcher.h:

typedef enum {
 INVALID_TYPE,
 READY,
 USER_CONNECTED,
 USER_DISCONNECTED,
 SELFTEST,
 SUPPLY_START,
 SUPPLY_STOP,
 FAULT,
 CRASH

} event_t;

This method returns false if the event queue or the given event is invalid is full.

Implementation Note. The event queue is implemented as a circular buffer. Elements
from the queue are accessed by applying the modulo operator:

event_queue[index % EVENT_QUEUE];

Two counters are used to queue track of the event queue’s state: a master index and a
slave index. The master index is incremented every time a new event is added to the
event queue. The slave index is incremented every time a new event is processed from
the event queue. While the slave index is smaller than the master index, it means that
the event loop must process new events:

while(slave_index != master_index) {

 UpdateEvent* event = &event_queue[slave_index];
 dispatchEvent(event);
 slave_index = (slave_index + 1) % EVENT_QUEUE;

}

Since multiple System Threads can add events to the event loop, it is necessary to
suspend the FreeRTOS scheduler while an event is being added to the queue:

vTaskSuspendAll();

 uint8_t next_index = (master_index + 1) % EVENT_QUEUE;
 event_queue[master_index] = event;
 master_index = next_index;

 xTaskResumeAll();
This avoids race conditions between multiple SystemThreads.
Improvement Note. The event dispatcher implementation is suboptimal. It could be
improved by using FreeRTOS event groups for lightweight events or FreeRTOS queues
for more complex events.

4.2.4. Data management
The information flow between the HTTP server and the Pollux III sensors is quite
 complex. The code readability was improved by using a design pattern involving three
entities:

- The data supplier (e.g., sensor data, sensor state, saved mission data)
- The data manager
- The data consumer (e.g., website, API)

Figure @ illustrates how the usage of a three-entity design pattern simplifies the
software architecture compared to a decentralized architecture. The data suppliers are
coloured in orange, the data manager in red and the data consumers in blue.

 A data manager serves as a “hub” between different data sources from Pollux III and
stores the data deemed important to display on the website. For instance, it computes
statistics over the power supplies’ data, such as the average power or the voltage ripple on
a given voltage rail and allows the client to access this data from the website or the API.
 Each data manager is a System Thread.

4.2.4.1. Sensor data
The SensorManager class in SensorManager.cpp/h handles the Power_BusInfo RoCo
packet. This packet contains sensor data related to a power supply’s voltage rail and is
regularly transmitted by Pollux III.
The packet data is used to fill the data structure holding all necessary information
related to a voltage rail:

typedef struct {
 float voltage;
 float current;
 float energy;
 float temperature;

 float last_voltages[SAMPLE_MEMORY];
 uint32_t last_voltages_index;

 float last_currents[SAMPLE_MEMORY];
 uint32_t last_currents_index;

} sensor_info_t;
In this data structure, the latest voltage, current, energy and temperature readings are
recorded. In addition, two circular buffers of size SAMPLE_MEMORY hold the latest voltages
and currents recorded for each voltage rail.
Using the circular buffers, the SensorManager class allows the computation of statistics
on a given power supply through the following methods:

float computeBatteryCharge();
 float computeAveragePower();
 float computeVoltageTransient(sensor_t sensor);
 float computeCurrentTransient(sensor_t sensor);
 float computeVoltageRipple(sensor_t sensor);
 float computeCurrentRipple(sensor_t sensor);

The latest sensor data can also be accessed through:

sensor_info_t getSensor(sensor_t sensor);

These functions are used by the API in SensorsTelemetry.cpp/h.

Implementation Note. The statistics for the power supplies were computed according
to the following considerations:

o The battery charge estimator computes the average battery voltage over the

sample memory and computes the average battery cell voltage by dividing by the
number of cells in series (7). Discharge tests of the battery pack were performed
using an active load and the discharge profile of a Sony Murata VTC6 cell could be
extracted from this experiment. This discharge profile is stored in cell_profile_x[]
for the voltage in volt and in cell_profile_y[] for the remaining charge in percent.
A Lagrange interpolation is then performed to obtain the actual state-of-charge of
the battery pack.

o The average power is computed by averaging the power readings over the sample
memory.

o The voltage and current transients are calculated by computing the average
readings over the sample memory and finding the largest value with respect to the
average.

o The voltage and current ripples are estimated by the standard deviation of the
readings over the sample memory.

Improvement Note. The battery charge estimator could make use of a Kalman filter or
similar estimation methods to obtain the state-of-charge not only from the battery pack
voltage but also from the embedded energy meter.

4.2.4.2. Health data
The HealthManager class in HealthManager.cpp/h provides the API with information
regarding the health of the power system. The API can request the HealthManager to
reset the Pollux III software or the Castor II software.

Additionally, the HealthManager implements a self-test functionality for future
developments on the 2024 digital twin project.

The management of a given controller is managed by the controller_t enum. Its value
can be one of SUPERVISOR, CTA, CTB, where SUPERVISOR represents Castor II, CTA
represents Pollux III and CTB is a legacy redundant controller from Pollux II, which is
kept for backward compatibility.

void reset(controller_t ct);
 void selftest(controller_t ct);

 reset and selftest are the actions that the API can call. The HealthManager can reset
Castor II or Pollux III but a self-test can only be performed on Pollux III for now.

 controller_info_t getInfo(controller_t controller);

getInfo retrieves the current health data. The available data is stored in the
controller_info_t data structure:

typedef struct {
uint8_t state;
 uint64_t ping;
 uint64_t last_update;
 float heap;
 float flash;
} controller_info_t;

The fields of this data structure are defined as follows:

o The state is propagated to the HealthManager through the EventDispatcher for

Castor II and through the RoCo PowerBus Power_ControllerHealth packet for Pollux
III. The state can be one of:

§ STATE_RESET: Default state.
§ STATE_BOOTING: State set when the microcontroller starts.
§ STATE_READY: State when the microcontroller is functional.
§ STATE_SYNC (Only for Castor II): State when a user is connected to the WiFi

network.
§ STATE_CRASH: State when an unrecoverable error has occurred.

o The ping is a measure of the round-trip latency between two microcontrollers. It is

zero for Castor II and the RoCo PowerBus PingPacket is used to compute the round-
trip time between Castor II and Pollux III.

o The last_update is the time at which the health data was last updated. It is
timestamped upon reception of the PingPacket in the case of Pollux III and
timestamped at each loop of the HealthManager System Thread.

o The heap field represents the heap memory usage in percent, as computed through

FreeRTOS in both Pollux III and Castor II. The RoCo PowerBus
Power_ControllerHealth packet is used to transmit this information from Pollux to
Castor.

o The flash field contains the external flash memory (logging storage) usage in
percent for Pollux III. It is zero for Castor II, as no data logged directly in Castor. The
RoCo PowerBus Power_ControllerHealth packet is used to transmit this information
from Pollux to Castor.

To perform a self-test on Pollux III, the API must call selftest. Afterwards,
getSelftestInfo can be used to get the current progress of the self-test and potential
errors that may have occurred.

selftest_info_t getSelftestInfo(controller_t controller);

The current self-test progress information is stored in the controller_info_t data
structure:

typedef struct {
 bool completed;
 uint64_t start_time;
 uint64_t end_time;
 uint8_t progress;
 uint8_t faults[16];
 uint8_t fault_index;

} selftest_info_t;
The RoCo PowerBus RequestPacket is used to request a self-test from Pollux III. Pollux
then periodically transmit a ProgressPacket to indicate what is currently tested and the
progress field is updated. When errors are encountered during the tests, several
ErrorPacket are transmitted: the faults and fault_index fields are updated. Once the
self-test is finished, a ResponsePacket is transmitted: completed and end_time are then
set accordingly.

4.2.4.3. Supply state data
The SupplyManager class in SupplyManager.cpp/h allows the API to retrieve the current
state of the power supplies, i.e., whether they are enabled or disabled.
The following structure stores the power supplies’ state.

typedef struct {
 bool running;
 bool cta_running;
 bool ctb_running;
 int64_t uptime;
 int64_t last_event;

} supply_info_t;
The API performs event requests of type SUPPLY_START or SUPPLY_STOP to the
EventDispatcher. The fields running and last_event are updated once the event is
executed on the event loop. The power supply’s uptime is also computed and
updated in the structure. Then, a RoCo PowerBus RequestPacket is sent to Pollux III.
Once Pollux has effectively changed the power supply’s state, it answers the
RequestPacket by sending a ResponsePacket, acknowledging the successful
completion of the state change. At this point, cta_running now contains the power
supply’s state according to Pollux. Note that ctb_running is a deprecated field kept
for backward compatibility.

 The API can access the state of the power supplies and the uptime statistics through
the following methods:

bool isRunning(supply_t device);

 bool isRunningForCTA(supply_t device);
 bool isRunningForCTB(supply_t device);
float getUptime(supply_t device);

Figure @ summarizes the SupplyManager software architecture.

Implementation Note. For a given power supply, its uptime in the supply_info_t data
structure is only updated when its state changes. The real-time uptime is computed by
adding the uptime already taken into account (in supply_info_t) and add the additional
uptime between the last event and the current time (remember that running has a
value of either zero or one):

uptime + running * (time - last_event);

4.2.4.4. Logging data
The LoggingManager class in LoggingManager.cpp/h handles the transfer of mission data
stored in Pollux’ flash memory to the client. See section 4.1.7 to obtain a detailed
description of the mission data transfer from Pollux’ point of view.
The storage and transfer of mission data is by far the most complex piece of software in
Castor/Pollux.

The software architecture is similar to the one used for the SupplyManager in section
4.2.4.3. Nevertheless, an additional interface layer manages the data transfer between
the HTTP Request and the Logging manager. This layer is called the Master-Slave Bridge
and prevents recursive dependencies between the HTTP Request and the Logging
manager (See improvement note). The full architecture is depicted in figure @.

Every time Pollux starts, a new mission ID is generated. This ID is a unique number
representing the current mission. The API can obtain the current mission ID by the method:

uint32_t getMissionID(bool cta);
 The cta parameter is unimportant and is only kept for backward compatibility with Pollux
II. This function sends a RequestPacket to the RoCo PowerBus to achieve its goal.
 The client can therefore download the data from a mission by performing an HTTP GET
request to http://192.168.1.42/download with the m GET field set to the requested mission
ID.
 From there on, the mission data flow is managed by 4 entities:

1) The HTTP request handler in Download.cpp/h.
2) The Master-Slave bridge in Download.h.
3) The logging data manager in LoggingManager.cpp/h.
4) Pollux III through the RoCo PowerBus.
The HTTP request handler on the server side accepts the request and provides the
mission data through the following steps:

1) The transfer is initiated by setting the HTTP response headers. The content-type is
set to application/octet-stream and the content-disposition is set to attachment.

2) The Master-Slave Bridge is called to initiate the corresponding transfer of the
mission data.

3) The HTTP request handler waits for the transfer to finish (see implementation note).
4) The HTTP status 200 OK is sent to the client.

5) The HTTP connection is closed.
The Master-Slave bridge simply connects the HTTP request handler to the logging data
manager.
The following protocol covers the mission data transfer between Castor and Pollux:

1) When the logging manager receives the download request from the Master-Slave
Bridge, it forwards the request to the RoCo PowerBus through a RequestPacket.

2) On Pollux, the first mission data block corresponding to the given mission ID is
loaded.

3) Pollux transmits the current mission data block to the RoCo PowerBus through a
PayloadPacket, which can transport a buffer up to 512 bytes. A CRC16 checksum of
the packet content is computed and appended to the packet.

4) Upon reception of the PayloadPacket, the logging manager checks whether the data

is correct by computing the CRC16 value of the packet and comparing it to the
ground-truth CRC16 value already appended to the packet.

5) If the payload is valid, Castor sends a ResponsePacket with an ACK target to Pollux,

confirming good reception of the packet.

6) Pollux then loads the next mission data block and performs step (3).

7) If the payload is invalid, Castor sends a ResponsePacket with a NACK target to

Pollux, implying that a communication error occurred in the last payload transfer.

8) Pollux reloads the same mission data block and performs step (3).

9) A payload of length zero sent by Pollux indicates an end-of-transfer.
This concludes the standard procedure to download the data from a mission.
The API can also request a full erase of the logging memory on Pollux. By design, the
flash memory on Pollux can only store around 1h of data, which motivates the need of
clearing this memory regularly. This feature is achieved by the following method:
void eraseFlashMemory(bool cta);

The cta parameter is unimportant and is only kept for backward compatibility with
Pollux II. This function sends a RequestPacket to the RoCo PowerBus to achieve its goal.

Implementation Note. When transmitting large amounts of information, such as
mission data, there is the possibility that a digital communication error occurs
between Castor and Pollux. Even though CRC16 verification is implemented for
verifying the integrity of a packet, it does not guarantee its correctness, nor does it
guarantee that all transmitted packets will be correctly detected (the packet ID might
be corrupted).
This is particularly an issue because Castor must acknowledge every payload packet it
receives, so that Pollux sends the next payload. Thus, if a payload packet or an
acknowledge is lost, the transfer fails completely.

To avoid that the HTTPRequestHandler stalls in such a condition, a semaphore with a
limited timeout is used. If the transfer fails, the semaphore will timeout and the
partially transferred mission data will still be correctly delivered to the client.
Improvement Note. The Master-Slave Bridge is an additional layer of complexity that
does not necessarily improve the code readability. Getting rid of this layer should be
possible but I didn’t manage to do it because the g++ compiler complained about
some sort of circular dependencies around the LoggingManager and the
corresponding HTTPRequestHandler…

4.2.5. API
4.2.5.1. API specification
The Castor API allows the client to perform requests to the power system. It is
accessible through HTTP GET requests under the address http://192.168.1.42/api, when
connected to the Castor network. The API always send responses to the client in the
application/json content-type. The responses are compliant with the IETF RFC 8259
JSON standard.
If the syntax of a request is correct, Castor responds with an HTTP 200 OK status.
Otherwise, an HTTP 400 Bad Request error is sent.
The GET request uses the following fields to perform a valid request.

Field Name Description
a Action Action to be performed. Must be one of: exe, get, set.
t Target Targeted resource on Castor.
v Value Payload to the targeted resource. Only used if the action is set or exe.

The actions to perform on Castor and Pollux are divided into three categories:
executers, getters, and setters.
For each of these action categories, the following API calls are implemented:

4.2.5.1.1. Executer requests

Target Payload Description
start Supply ID Start the given power supply.
stop Supply ID Targeted resource on Castor.
reset Controller ID Resets the targeted controller.
test Controller ID Starts a self-test on the targeted controller.
erase Controller ID Erases the logging flash memory of the targeted controller.

Note: Supply ID must be one of: 5v, 15v, 24v, 48v, corresponding to lva, lvb, hva, hvb.
Note: Controller ID must be one of: cta, supervisor, corresponding to Pollux and
Castor.
4.2.5.1.2. Executer responses
A single standard response is sent back to the client.

JSON field Type Description
success boolean True if the operation succeeded
message string User-friendly operation feedback.

4.2.5.1.3. Getter requests

Target Description
supplies Returns the state of the power supplies.
sensors Returns the latest sensor measurements and statistics.
diagnostics Returns the latest system diagnostics.
temperatures Returns the latest measured temperatures.
transients Returns the latest transients that have occurred on the supplies.

supervisor_test Returns the self-test results of the supervisor controller (Castor).
cta_test Returns the self-test results of the CTA controller (Pollux).
mission_id Returns the current mission ID.

4.2.5.1.4. Getter responses
The standard JSON field success and message are sent back to the client, alongside
with custom JSON fields for each possible target.

For all targets:

JSON field Type Description
success boolean True if the operation succeeded
message string User-friendly operation feedback.

For supplies target:
JSON field Type Description
b5V object JSON description (see below) of the state of the LVA bus.
b15V object JSON description (see below) of the state of the LVB bus.
b24V object JSON description (see below) of the state of the HVA bus.
b48V object JSON description (see below) of the state of the HVB bus.

Supply state object:
JSON field Type Description
running boolean True if the supply is enabled.
uptime number Proportion of time enabled over total time.

For sensors target:
JSON field Type Description
battery object JSON description of the readings on the input bus.
motors object JSON description of the readings on the direct output bus.
b5V object JSON description of the readings on the LVA bus.
b15V object JSON description of the readings on the LVB bus.
b24V object JSON description of the readings on the HVA bus.
b48V object JSON description of the readings on the HVB bus.

For battery JSON field:
JSON field Type Description
charge number Battery charge left on the power system.
runtime number Estimated battery time left at the same power.
voltage number Input bus voltage.
production number Power incoming in the power system.
current number Current incoming in the power system.
ripple number Voltage ripple on the input bus.

For all other JSON fields:
JSON field Type Description
voltage number Bus voltage.
consumption number Power consumed.
current number Current consumed.
ripple number Voltage ripple on the bus.

For diagnostics target:

JSON field Type Description
supervisor object JSON description (cf. below) of the Castor’s diagnostics.
cta object JSON description (cf. below) of the Pollux’ diagnostics.
ctb object Kept for backward compatibility.

Controller diagnostics object:
JSON field Type Description
state string State of the controller.
ping number Round-trip time between the controller and Castor
last_update number Last timestamp the values above were updated.
heap number Proportion of heap memory available.
flash number Proportion of logging flash memory available.

For temperatures target:
JSON field Type Description
battery number Temperature on the input bus.
motors number Temperature on the direct output bus.
b5V number Temperature on the 5V bus.
b15V number Temperature on the 15V bus.
b24V number Temperature on the 24V bus.
b48V number Temperature on the 48V bus.
ambient number Ambient temperature.
lva number Temperature on the LVA power supply.
lvb number Temperature on the LVB power supply.
hva number Temperature on the HVA power supply.
hvb number Temperature on the HVB power supply.

For transients target:
JSON field Type Description
voltage object JSON description (see below) of the latest voltage transient.
current object JSON description (see below) of the latest current transient.

Transient object:
JSON field Type Description
battery string Latest transient on the input bus.
motors number Latest transient on the direct output bus.
b5V number Latest transient on the LVA bus.
b15V number Latest transient on the LVB bus.
b24V number Latest transient on the HVA bus.
b48V number Latest transient on the HVB bus.

For supervisor_test and cta_test targets:
JSON field Type Description
completed boolean True if the operation completed
start_time number Timestamp set at the beginning of the self-test.
end_time number Timestamp set at the end of the self-test.
progress number Progress of the self-test.
num_faults number Number of faults that have occurred until now.
faults array Array of 16 numbers describing the latest faults.

Setters:
None implemented for now

4.2.5.2. API backend
An HTTPRequestHandler in Backend.cpp/h handles client requests and parses the GET
fields that encode the operation the client wants to perform. Three possible operations
are available to the client: exe, get and set.
The backend bridge Backend.cpp/h is an interface that binds the backend request
handler to the telemetry backend. For the sake of simplicity, only three functions are
exported by the backend bridge:

std::function<bool(const char*, char*, uint32_t)> getter;

 std::function<bool(const char*, const char*)> setter;
 std::function<bool(const char*, const char*, char*, uint32_t)> executer;

These functions are bound to the following functions of the telemetry backend in
TelemetryBackend.cpp/h:

bool get(const char* variable, char* result, uint32_t length);

 bool set(const char* variable, const char* value);
bool execute(const char* action, const char* payload, char* result, uint32_t

length);
In these function prototypes, the fields variable and action correspond to the target
and the fields value and payload correspond to the value in the API specification in
section 4.2.5.1.
The telemetry backend dispatches the data requests (getters) to multiple telemetry
formatters, such as DiagnosticsTelemetry.cpp/h, LoggingTelemetry.cpp/h,
SafetyTelemetry.cpp/h, SensorsTelemetry.cpp/h and SuppliesTelemetry.cpp/h. The
purpose of these files is simply to format the data gathered in the data managers in the
JSON format, so that they can be used as a response to client requests.
The telemetry backend also dispatches the action requests (executers) to the
EventDispatcher. Figure @ depicts the API backend architecture.

4.3. Additional software
4.3.1. API access
The easily access the Castor API, there is the possibility to add the following lines of code
 to your .bashrc/.zshrc:

xplore() {
 curl "http://192.168.1.42/api?a=$1&t=$2&v=$3"
}

 After adding these lines to your .bashrc/.zshrc, do not forget to source it using:

source ~/.bashrc

 or

source ~/.zsh

 depending on whether the user uses a Linux distribution or macOS respectively

(Windows does not count, please buy a decent computer).

 These lines of code create a shortcut, so that instead of having to open a web browser
and manually enter an API call for Castor, one can simply use the terminal.

 For example, the following API call that resets the Pollux board:

 http://192.168.1.42/api?a=exe&t=reset&v=cta

 can be simplified by typing the following line in the terminal:

 xplore exe reset cta

4.3.2. Power report generator

5. Operations

5.1. Tools and parts

Tools

Description
Electric tape [at least 1m]
Duct tape
Pen
AWG12 cable [at least 1m]
Weller Soldering iron
Weller SMD iron tip
Weller large cable iron tip
Lead-free solder
Flux with syringe
Weller tip activator
M1.5 Allen key
Multimeter
Adjustable 230VAC 5A 30V power supply
Oscilloscope with at least two channels sampling at no less than 100MSa/s
Swiss multi-socket
Epoxy tube

Parts

Reference Description
BAT1 21V to 29V battery, including 30A BMS
BAT2 Same as above but with an incorrect discharge connector [!]
KEY BMS charging activation connector
CHGR Li-Ion battery charger
ACPS 1.5kW AC power supply 230V AC to 24V DC
ADP European male Swiss female grid plug adapter
SAF Safety circuit
PS3A Pollux III power supply
PS3B Pollux III power supply (backup)
SUP Castor II supervisor WiFi module
LVA Low-voltage (5V and 15V) power module
LVB Same as above
HVA High-voltage (24V and 48V) power module
HVB Same as above
FAN 24V 120x60x18 double fan

DGL Polarity inversion XT60 dongle
SCR M1.5x8 screws [TO VERIFY]

5.2. Definitions

Generalities

Power stage. Part of a power module that which may nominally carry a high-current flow.
Generally, it consists of large inductors, capacitors and MOSFETs.

Control stage. Part of a power module that controls the power stage by closing the loop
between the produced voltage/current and the output MOSFET signals.

EMU (Energy Measurement Unit). Part of the power supply which computes how much
power is dissipated by a given subsystem.

CTA/CTB (Controller A/B). Redundant micro-controllers that control the state of the power
modules. In addition, CTA oversees the collection, logging, and transmission of the data
from the EMU.

BMS (Battery Management System). Critical and intrinsic part of a battery pack. Ensures
that the battery pack remains in its SOA (Safe Operating Area). Manages the charging and
discharging process of the battery.

Ports

Reference Description
BAT: DCH Battery’s XT60 male to discharge the power to the rover
BAT: CHG Battery’s XT60 female to charge the battery
SAF: DCH Safety system’s input from the battery
SAF: PSM Safety system’s output to the power supply
PS2: IN Power supply’s main input [30A]
PS2: DIR1 Power supply’s direct output [30A] to the handling device
PS2: DIR2 Power supply’s auxiliary direct output [10A]
PS2: 5V1 Power supply’s 5V output 1 [10A] to the Science bay
PS2: 5V2 Power supply’s 5V output 2 [10A]
PS2: 15V1 Power supply’s 15V output 1 [10A] to the Main computer
PS2: 15V2 Power supply’s 15V output 2 [10A]
PS2: 24V1 Power supply’s 24V output 1 [10A] to the LiDAR
PS2: 24V2 Power supply’s 24V output 2 [10A] to the Antenna
PS2: 48V Power supply’s 48V output [5A]
PS2: LVA Power supply’s LVA power connector
PS2: LVB Power supply’s LVB power connector
PS2: HVA Power supply’s HVA power connector

PS2: HVB Power supply’s HVB power connector
PS2: FLW Power supply’s front-left wheel connector group (CAN ID 1/5)
PS2: FRW Power supply’s front-right wheel connector group (CAN ID 2/6)
PS2: BRW Power supply’s back-right wheel connector group (CAN ID 3/7)
PS2: BLW Power supply’s back-left wheel connector group (CAN ID 4/8)
PS2: SUP Power supply’s supervisor connector
PS2: JTGA Power supply’s JTAG connector for CTA
PS2: JTGB Power supply’s JTAG connector for CTB
PS2: RSTA Power supply’s reset button for CTA
PS2: RSTB Power supply’s reset button for CTB
PS2: FLHA Power supply’s flash button for CTA
PS2: FLHB Power supply’s flash button for CTB
PS2: FAN+ Power supply’s fan positive pin
PS2 : FAN- Power supply’s fan negative pin
LVA: CN LVA’s power connector
LVB: CN LVB’s power connector
HVA: CN HVA’s power connector
HVB: CN HVB’s power connector
SUP: CN Supervisor’s connector to the power supply
SUP: USB Supervisor’s micro-USB port to a host computer
SUP: RST Supervisor’s reset button
SUP: FLH Supervisor’s flash button
FAN: + Fan’s positive terminal
FAN: - Fan’s negative terminal

5.3. Operations procedure

5.3.1. Main procedure
Preconditions
a) Press on the emergency button.
b) Set the circuit breaker on ‘0’.
c) Remove the LVA, LVB, HVA, HVB, SUP modules from the power supply.
d) Disconnect the power supply’s polarity dongle from the safety circuit (don’t

disconnect the dongle from the power supply).
e) Disconnect the battery “discharge” connector from the safety circuit.
f) Put electric type on the battery’s “discharge” male connector.
g) Put electric type on the battery’s “charge” male connector.

Preparation procedure [T - 1day]
a) Perform a battery integrity check with BAT1 [procedure: z)].
b) Charge the battery BAT1 [procedure: 5.3.3].
c) If any of [a b] fails, redo [a b] replacing BAT1 with BAT2.
d) Perform a safety system integrity check with SAF [procedure: -].
e) Perform a safety system quick check with SAF [procedure: 5.3.5].
f) If any of [d e] fails, proceed to the emergency procedure [procedure: TBD].
g) Perform a power supply integrity check with PS2A [procedure: 5.3.6].
h) Perform a power supply quick check with PS2A [procedure:5.3.9].
i) If any of [g h] fails, redo [g h] replacing PS2A with PS2B and skip [i j k l m u v w x].
j) Install the supervisor [procedure: 5.3.10].

k) Perform a supervisor SUP quick test [procedure: 5.3.12].
l) Perform a CTA quick test [procedure: 5.3.13].
m) Perform a CTB quick test [procedure: 5.3.13].
n) If any of [j k] fails, skip [u v w x].
o) Install LVA and LVB power modules [procedure: 5.3.14].
p) Perform a power module quick test with LVA/LVB [procedure: 5.3.15].
q) Install HVA and HVB power modules [procedure: 5.3.14].
r) Perform a power module quick test with HVA/HVB [procedure: 5.3.15].
s) If any of [p q] fails, abort the main procedure [procedure: 3.2] and proceed to the

emergency procedure [procedure: TBD].
t) Connect subsystems [procedure: 5.3.16].

Mission procedure [T – 10min]
u) Start the power system [procedure: 5.3.7].
v) Monitor the power supply [procedure: 5.3.17].

Post-mission procedure [T + 40min]
w) Fetch the mission data [procedure: 5.3.18].
x) Generate mission report [procedure: 5.3.19].
y) Hand-out mission report file “report.pdf” in the generated Mission folder from

step [w] to at least two ERC judges.
z) Stop the power system [procedure: 5.3.8].

5.3.2. Battery integrity check

Preconditions
a) Battery charge port is not connected.
b) Battery discharge port is not connected.
c) Multi-meter with leads is available.

Procedure
a) Start multi-meter.
b) Set multi-meter mode on DC (if applicable).
c) Connect multi-meter leads on V and COM ports.

WARNING: Failure mode [Error! Reference source not found.]: If the operator
inadvertently connects any of the leads on the A/Ω port, a short-circuit will occur, the
multi-meter’s fuse will be blown, the BMS will be bricked and the batteries could be
damaged.

d) Set multi-meter on Voltage range 230V.
e) Measure the battery’s voltage on the BMS’ charge port with the multi-meter leads.
f) The battery integrity check succeeds if the voltage read on the multi-meter lies

between 21V and 29V.

Failure modes:
- [Error! Reference source not found.]: BMS short-circuited
- [Error! Reference source not found.]: Undervoltage detected
- [Error! Reference source not found.]: Apparent overvoltage

5.3.3. Charging the battery

Preconditions
a) Battery charge port is not connected.
b) Battery discharge port is not connected.
c) Electric tape is placed on the discharge port.
d) Part CHGR (battery charger) available.
e) Part ACPS (230VAC to 24VDC power supply) available.
f) Part KEY (connector to enable BMS charging mode) available.

Procedure
a) Connect the KEY to the BMS. Ensure it is well secured into the BMS.
b) Connect the ACPS supply’s XT90 (biggest connector on the ACPS) to the battery

charger CHGR on port labelled DC-IN
c) Connect the BMS’ charge port to the CHGR on port labelled CH1 or CH2

Three control buttons (TOP, MID, BOT) are available on the left or right for CH1 or
CH2 respectively.

d) Press at least 0.5s on the MID button.
e) Using TOP and BOT, navigate to the “charge” menu.
f) Verify that the charger settings read as follows: {LiPo 4.2V, 7S, 10A, Charge}.
g) Select “Start” using TOP and BOT and validate using MID.
h) Press MID when the “Perform unbalanced task?” message appears.

Failure modes
- [Error! Reference source not found.] BMS full failure
- [Error! Reference source not found.] BMS detected overheat
- [Error! Reference source not found.] BMS detected overcurrent after short-circuit
- [Error! Reference source not found.] BMS detected overcurrent while nominally

driving the rover
- [Error! Reference source not found.] BMS detected battery undervoltage
- [Error! Reference source not found.] BMS detected charger overvoltage
- [Error! Reference source not found.] Unable to charge battery
- [Error! Reference source not found.] Charger full failure
- [Error! Reference source not found.] Abnormal battery connection

5.3.4. Checking safety system integrity

Preconditions
a) Safety system’s input is not connected.
b) Safety system’s output is not connected.
c) Multi-meter with leads is available.

Procedure
a) Start multi-meter.
b) Connect multi-meter leads on Ω and COM ports.
c) Set multi-meter on Resistance range 1kΩ.

d) Measure the resistance on the safety system’s input connector with the multi-meter
leads.

e) If the resistance is less than 1kΩ, the safety system did NOT PASS the integrity check
and the procedure terminates here.

f) Measure the resistance on the safety system’s output connector with the multi-meter
leads.

g) If the resistance is less than 1kΩ, the safety system did NOT PASS the integrity check
and the procedure terminates here.

Failure modes:
- [Error! Reference source not found.]: Relay failure
- [Error! Reference source not found.]: Wiring failure

5.3.5. Safety system quick test

Preconditions
a) Safety system’s input is connected to the BMS’ discharge connector.
b) Safety system’s output is not connected.
c) Multi-meter with leads is available.

Procedure
a) Start multi-meter.
b) Set multi-meter mode on DC (if applicable).
c) Connect multi-meter leads on V and COM ports.

WARNING: Failure mode [Error! Reference source not found.]: If the operator
inadvertently connects any of the leads on the A/Ω port, a short-circuit will occur,
even though there is a fast-acting circuit breaker, the multi-meter’s fuse might still be
blown. The BMS and batteries should remain protected, but the failure mode is still
listed here for reference.

d) Set multi-meter on Voltage range 230V.
e) Press on the emergency button.
f) Set the circuit breaker on ‘0’.
g) Measure the safety system’s output voltage with the two multi-meter leads.
h) The safety system quick test fails if the multi-meter indicates a voltage above 1V for

more than 10s.
i) Set the circuit breaker on ‘1’.
j) Turn the emergency button to release it.
k) Measure the safety system’s output voltage with the two multi-meter leads.
l) The safety system quick test fails if the multi-meter indicates a voltage less than 21V

for more than 10s.

5.3.6. Checking power supply integrity

Preconditions
a) The power supply’s input and outputs are not connected.
b) The power supply is not connected to the power modules LVA, LVB, HVA, HVB.
c) The power supply is not connected to the supervisor SUP.

d) Multi-meter with leads is available.

Procedure
h) Start multi-meter
i) Connect multi-meter leads on Ω and COM ports.
j) Set multi-meter on Resistance range 1kΩ.
k) Measure the resistance on the power supply’s input with the multi-meter leads.
l) Measure the resistance on the power supply’s 5V output with the multi-meter leads.
m) Measure the resistance on the power supply’s 15V output with the multi-meter leads.
n) Measure the resistance on the power supply’s 24V output with the multi-meter leads.
o) Measure the resistance on the power supply’s 48V output with the multi-meter leads.
p) If the resistance is less than 1kΩ for any of [k l m n o] measurements, the power

supply did NOT PASS the integrity check.

5.3.7. Starting power system

Preconditions
a) Safety system’s input is connected to the BMS’ discharge connector.
b) Safety system’s output is connected to the power supply’s input connector.

Procedure
a) Set the circuit breaker on ‘1’.
b) Turn the emergency button to release it.

5.3.8. Stopping power system

Procedure
a) Press on the emergency button.
b) Set the circuit breaker on ‘0’.

5.3.9. Power supply quick test

Preconditions
a) The power supply’s outputs are not connected.
b) The power supply is not connected to the power modules LVA, LVB, HVA, HVB.
c) The power supply is not connected to the supervisor SUP.

Procedure
a) Start power supply according to [procedure: 5.3.7].
b) The quick test succeeds if a bright LED next to the SUP connector can be observed.
c) Stop power supply according to [procedure: 5.3.8].

5.3.10. Installing supervisor

Procedure

a) Insert the supervisor SUP on its socket connector PS:SUP.
By design, it is not possible match the connectors wrongly.
It is possible to have the impression that the connector is not well-secured into its
socket. This is only an impression.

5.3.11. Connecting to supervisor

Preconditions
a) Supervisor was installed according to [procedure: 5.3.10].
b) Power supply was started according to [procedure: 5.3.7].
c) A computer/tablet/smartphone (DEV) is available.

Procedure
a) Ensure that the LED on the supervisor is blinking (at around 1Hz).
b) Connect to WiFi or 4G with your DEV.
c) Open the Slack application.
d) Browse to the EPFL Xplore slack workspace.
e) Send a direct message to yourself with content “get_castor_password”.
f) Answer the security question and note the obtained password.
g) Using a computer, tablet or phone, connect to the WiFi network called

“Xplore_2.4GHz”, using the password obtained in (d).
h) Ensure that the LED on the supervisor is now constantly green.
i) Open a web browser and follow the link http://192.168.1.42/
j) If a user interface appears, the operator was successfully connected to the

supervisor.

5.3.12. Supervisor quick test

Preconditions
a) Operator is connected to supervisor according to [procedure: 5.3.11]

Procedure
a) The quick test succeeds if the “Supervisor: Ping” in the “Diagnostics” panel has a

value between 10ms and 500ms.

5.3.13. CTA/CTB quick test

Preconditions
a) Operator is connected to supervisor according to [procedure: 5.3.11]

Procedure
a) The quick test succeeds if the “CTA/CTB: Ping” in the “Diagnostics” panel has a value

between 0.1ms and 10ms.

5.3.14. Installing power module

Procedure
a) Insert the given power module on its socket connector.
LV power modules can be recognized by the Silver colour of the vias and pads.
HV power modules can be recognized by the Gold colour of the vias and pads.
LV power modules are matched to PS:LV connectors (see definitions [5.2]), on the side of

the SUP WiFi supervisor.
HV power modules are matched to PS:HV connectors (see definitions [5.2]), on the side

of the CTA/CTB microcontrollers.

5.3.15. Power modules quick test

Preconditions
a) The power supply’s outputs are disconnected.
b) The power supply is connected to the supervisor SUP.

Procedure
a) Start power supply according to [procedure: 5.3.7].
b) Connect to the supervisor according to [procedure: 5.3.11]
c) Ensure that the output voltages of the power module being tested are displayed on

the “Supplies” panel in the user interface.
d) If the voltages are withing 5% of the target voltage and a green label “Stable” is

displayed for each of the two voltages, then the quick test succeeded.
e) Stop power supply according to [procedure: 5.3.8].

5.3.16. Connecting subsystems
Preconditions
a) There are no short-circuits on the subsystems.

Procedure
a) Connect the subsystem’s DC jacks in the power supply, according to the subsystem’s

voltage needs.
b) Use zip-ties between the DC jacks to create a small lateral constraint on the

connectors.

5.3.17. Monitoring the power supply
Preconditions
a) The power supply’s outputs are connected to the subsystems.
b) The power supply is connected to the supervisor SUP.

Procedure
a) Connect to the supervisor according to [procedure: 5.3.11]
b) Ensure that the operator is successfully connected to the user interface.
The battery charge and remaining operational time are display on the “Battery” panel.
The output voltages of the power module being tested are displayed on the “Supplies”

panel.
The peak temperatures and currents are displayed in the “Safety panel”.

c) Inform the rest of the operational team when the battery charge reaches the
following values: [50% 20% 10% 5% 2% 1%], along with the estimated remaining
operational time.

d) If any voltage is not within 5% of the target voltage or a red label “Unstable” is
displayed on any voltage, failure mode [] is reached.

e) If the rover’s peak temperature is higher than 70°C, failure mode [] is reached.
f) If the rover’s peak current is higher than 30A, failure mode [] is reached.
g) If “Supervisor: Ping” is over 500ms, reset the supervisor in the “Diagnostics” tab.
h) If “CTA: Ping” is over 50ms, reset CTA in the “Diagnostics” tab.
i) If “CTB: Ping” is over 50ms, reset CTB in the “Diagnostics” tab.
j) If “Supervisor: Ping” remains over 500ms after resetting, disconnect and reconnect

to the Xplore_2.4GHz network.
k) Repeat [c d e f g h i j] until the end of the mission.

5.3.18. Fetching mission data

Preconditions
a) The power supply is connected to the supervisor SUP.

Procedure

[TODO] Implement a way to know which mission ID we are in.
a) Download the file http://192.168.1.42/download?t=cta&m=0
b) Download the file http://192.168.1.42/download?t=cta&m=1
c) Download the file http://192.168.1.42/download?t=cta&m=2
d) Download the file http://192.168.1.42/download?t=cta&m=3
e) Download the file http://192.168.1.42/download?t=cta&m=4
f) Download the file http://192.168.1.42/download?t=cta&m=5
g) Download the file http://192.168.1.42/download?t=cta&m=6
h) Download the file http://192.168.1.42/download?t=cta&m=7
i) Download the file http://192.168.1.42/download?t=cta&m=8
j) Download the file http://192.168.1.42/download?t=cta&m=9

5.3.19. Generating mission report

Preconditions
a) The power supply is connected to the supervisor SUP.
b) XploreGrapher is installed in the device DEV.

Procedure
a) Retrieve the mission ID (TODO) and denote it by [mission_id].
b) Run the following command: “./XploreGrapher.py cta [mission_id]”.
c) The mission report PDF document, along with the LaTeX source files, are now

located in the “Mission [mission_id] (cta)” folder.

5.4. Hardware integration procedure
5.4.1. Main procedure
5.4.2. Integrating battery
5.4.3. Integrating safety systems
5.4.4. Integrating power supply

5.5. Software integration procedure
5.5.1. Main procedure
5.5.2. Updating BMS firmware
5.5.3. Integrating supervisor software
5.5.4. Integrating CTA/CTB software
5.5.5. Installing XploreGrapher software

